2 resultados para Visible and ultraviolet light
em Digital Commons at Florida International University
Resumo:
The impact of eliminating extraneous sound and light on students’ achievement was investigated under four conditions: Light and Sound controlled, Sound Only controlled, Light Only controlled and neither Light nor Sound controlled. Group, age and gender were the control variables. Four randomly selected groups of high school freshmen students with different backgrounds were the participants in this study. Academic achievement was the dependent variable measured on a pretest, a posttest and a post-posttest, each separated by an interval of 15 days. ANOVA was used to test the various hypotheses related to the impact of eliminating sound and light on student learning. Independent sample T tests on the effect of gender indicated a significant effect while age was non- significant. Follow up analysis indicated that sound and light are not potential sources of extraneous load when tested individually. However, the combined effect of sound and light seems to be a potential source of extrinsic load. The findings revealed that the performance of the Sound and Light controlled group was greater during the posttest and post-posttest. The overall performance of boys was greater than that of girls. Results indicated a significant interaction effect between group and gender on treatment subjects. However gender alone was non-significant. Performance of group by age had no significant interaction and age alone was non-significant in the posttest and post-posttest. Based on the results obtained sound and light combined seemed to be the potential sources of extraneous load in this type of learning environment. This finding supports previous research on the effect of sound and light on learning. The findings of this study show that extraneous sound and light have an impact on learning. These findings can be used to design better learning environments. Such environments can be achieved with different electric lighting and sound systems that provide optimal color rendering, low glare, low flicker, low noise and reverberation. These environments will help people avoid unwanted distraction, drowsiness, and photosensitive behavior.
Resumo:
Plants that develop under foliar shade encounter both low photosynthetically active radiation (PAR) and low red to far red ratios (R:FR). Both of these factors are important in determining developmental responses to shade. Papaya (Carica papaya L.) seedlings grown under filtered shade (low PAR and low R:FR) were compared with seedlings grown under neutral shade (low PAR with R:FR similar to that of full sunlight), and high light (moderate PAR with R:FR similar to that of full sunlight). The results indicated that papaya exhibits a light seeking strategy as evidenced by morphological and anatomical differences between treatments. Based on past research the results also indicate shade developmental responses in papaya to be phytochrome mediated.