6 resultados para Virtual research

em Digital Commons at Florida International University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Even though e-learning endeavors have significantly proliferated in recent years, current e-learning technologies provide poor support for group-oriented learning. The now popular virtual world's technologies offer a possible solution. Virtual worlds provide the users with a 3D - computer generated shared space in which they can meet and interact through their virtual representations. Virtual worlds are very successful in developing high levels of engagement, presence and group presence in the users. These elements are also desired in educational settings since they are expected to enhance performance. The goal of this research is to test the hypothesis that a virtual world learning environment provides better support for group-oriented collaborative e-learning than other learning environments, because it facilitates the emergence of group presence. To achieve this, a quasi-experimental study was conducted and data was gathered through the use of various survey instruments and a set of collaborative tasks assigned to the participants. Data was gathered on the dependent variables: Engagement, Group Presence, Individual Presence, Perceived Individual Presence, Perceived Group Presence and Performance. The data was analyzed using the statistical procedures of Factor Analysis, Path Analysis, Analysis of Variance (ANOVA) and Multivariate Analysis of Variance (MANOVA). The study provides support for the hypothesis. The results also show that virtual world learning environments are better than other learning environments in supporting the development of all the dependent variables. It also shows that while only Individual Presence has a significant direct effect on Performance; it is highly correlated with both Engagement and Group Presence. This suggests that these are also important in regards to performance. Developers of e-learning endeavors and educators should incorporate virtual world technologies in their efforts in order to take advantage of the benefit they provide for e-learning group collaboration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The population of English Language Learners (ELLs) globally has been increasing substantially every year. In the United States alone, adult ELLs are the fastest growing portion of learners in adult education programs (Yang, 2005). There is a significant need to improve the teaching of English to ELLs in the United States and other English-speaking dominant countries. However, for many ELLs, speaking, especially to Native English Speakers (NESs), causes considerable language anxiety, which in turn plays a vital role in hindering their language development and academic progress (Pichette, 2009; Woodrow, 2006). ^ Task-based Language Teaching (TBLT), such as simulation activities, has long been viewed as an effective approach for second-language development. The current advances in technology and rapid emergence of Multi-User Virtual Environments (MUVEs) have provided an opportunity for educators to consider conducting simulations online for ELLs to practice speaking English to NESs. Yet to date, empirical research on the effects of MUVEs on ELLs' language development and speaking is limited (Garcia-Ruiz, Edwards, & Aquino-Santos, 2007). ^ This study used a true experimental treatment control group repeated measures design to compare the perceived speaking anxiety levels (as measured by an anxiety scale administered per simulation activity) of 11 ELLs (5 in the control group, 6 in the experimental group) when speaking to Native English Speakers (NESs) during 10 simulation activities. Simulations in the control group were done face-to-face, while those in the experimental group were done in the MUVE of Second Life. ^ The results of the repeated measures ANOVA revealed after the Huynh-Feldt epsilon correction, demonstrated for both groups a significant decrease in anxiety levels over time from the first simulation to the tenth and final simulation. When comparing the two groups, the results revealed a statistically significant difference, with the experimental group demonstrating a greater anxiety reduction. These results suggests that language instructors should consider including face-to-face and MUVE simulations with ELLs paired with NESs as part of their language instruction. Future investigations should investigate the use of other multi-user virtual environments and/or measure other dimensions of the ELL/NES interactions.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increasing use of model-driven software development has renewed emphasis on using domain-specific models during application development. More specifically, there has been emphasis on using domain-specific modeling languages (DSMLs) to capture user-specified requirements when creating applications. The current approach to realizing these applications is to translate DSML models into source code using several model-to-model and model-to-code transformations. This approach is still dependent on the underlying source code representation and only raises the level of abstraction during development. Experience has shown that developers will many times be required to manually modify the generated source code, which can be error-prone and time consuming. ^ An alternative to the aforementioned approach involves using an interpreted domain-specific modeling language (i-DSML) whose models can be directly executed using a Domain Specific Virtual Machine (DSVM). Direct execution of i-DSML models require a semantically rich platform that reduces the gap between the application models and the underlying services required to realize the application. One layer in this platform is the domain-specific middleware that is responsible for the management and delivery of services in the specific domain. ^ In this dissertation, we investigated the problem of designing the domain-specific middleware of the DSVM to facilitate the bifurcation of the semantics of the domain and the model of execution (MoE) while supporting runtime adaptation and validation. We approached our investigation by seeking solutions to the following sub-problems: (1) How can the domain-specific knowledge (DSK) semantics be separated from the MoE for a given domain? (2) How do we define a generic model of execution (GMoE) of the middleware so that it is adaptable and realizes DSK operations to support delivery of services? (3) How do we validate the realization of DSK operations at runtime? ^ Our research into the domain-specific middleware was done using an i-DSML for the user-centric communication domain, Communication Modeling Language (CML), and for microgrid energy management domain, Microgrid Modeling Language (MGridML). We have successfully developed a methodology to separate the DSK and GMoE of the middleware of a DSVM that supports specialization for a given domain, and is able to perform adaptation and validation at runtime. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is a growing societal need to address the increasing prevalence of behavioral health issues, such as obesity, alcohol or drug use, and general lack of treatment adherence for a variety of health problems. The statistics, worldwide and in the USA, are daunting. Excessive alcohol use is the third leading preventable cause of death in the United States (with 79,000 deaths annually), and is responsible for a wide range of health and social problems. On the positive side though, these behavioral health issues (and associated possible diseases) can often be prevented with relatively simple lifestyle changes, such as losing weight with a diet and/or physical exercise, or learning how to reduce alcohol consumption. Medicine has therefore started to move toward finding ways of preventively promoting wellness, rather than solely treating already established illness. Evidence-based patient-centered Brief Motivational Interviewing (BMI) interven- tions have been found particularly effective in helping people find intrinsic motivation to change problem behaviors after short counseling sessions, and to maintain healthy lifestyles over the long-term. Lack of locally available personnel well-trained in BMI, however, often limits access to successful interventions for people in need. To fill this accessibility gap, Computer-Based Interventions (CBIs) have started to emerge. Success of the CBIs, however, critically relies on insuring engagement and retention of CBI users so that they remain motivated to use these systems and come back to use them over the long term as necessary. Because of their text-only interfaces, current CBIs can therefore only express limited empathy and rapport, which are the most important factors of health interventions. Fortunately, in the last decade, computer science research has progressed in the design of simulated human characters with anthropomorphic communicative abilities. Virtual characters interact using humans’ innate communication modalities, such as facial expressions, body language, speech, and natural language understanding. By advancing research in Artificial Intelligence (AI), we can improve the ability of artificial agents to help us solve CBI problems. To facilitate successful communication and social interaction between artificial agents and human partners, it is essential that aspects of human social behavior, especially empathy and rapport, be considered when designing human-computer interfaces. Hence, the goal of the present dissertation is to provide a computational model of rapport to enhance an artificial agent’s social behavior, and to provide an experimental tool for the psychological theories shaping the model. Parts of this thesis were already published in [LYL+12, AYL12, AL13, ALYR13, LAYR13, YALR13, ALY14].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The population of English Language Learners (ELLs) globally has been increasing substantially every year. In the United States alone, adult ELLs are the fastest growing portion of learners in adult education programs (Yang, 2005). There is a significant need to improve the teaching of English to ELLs in the United States and other English-speaking dominant countries. However, for many ELLs, speaking, especially to Native English Speakers (NESs), causes considerable language anxiety, which in turn plays a vital role in hindering their language development and academic progress (Pichette, 2009; Woodrow, 2006). Task-based Language Teaching (TBLT), such as simulation activities, has long been viewed as an effective approach for second-language development. The current advances in technology and rapid emergence of Multi-User Virtual Environments (MUVEs) have provided an opportunity for educators to consider conducting simulations online for ELLs to practice speaking English to NESs. Yet to date, empirical research on the effects of MUVEs on ELLs’ language development and speaking is limited (Garcia-Ruiz, Edwards, & Aquino-Santos, 2007). This study used a true experimental treatment control group repeated measures design to compare the perceived speaking anxiety levels (as measured by an anxiety scale administered per simulation activity) of 11 ELLs (5 in the control group, 6 in the experimental group) when speaking to Native English Speakers (NESs) during 10 simulation activities. Simulations in the control group were done face-to-face, while those in the experimental group were done in the MUVE of Second Life. The results of the repeated measures ANOVA revealed after the Huynh-Feldt epsilon correction, demonstrated for both groups a significant decrease in anxiety levels over time from the first simulation to the tenth and final simulation. When comparing the two groups, the results revealed a statistically significant difference, with the experimental group demonstrating a greater anxiety reduction. These results suggests that language instructors should consider including face-to-face and MUVE simulations with ELLs paired with NESs as part of their language instruction. Future investigations should investigate the use of other multi-user virtual environments and/or measure other dimensions of the ELL/NES interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is a growing societal need to address the increasing prevalence of behavioral health issues, such as obesity, alcohol or drug use, and general lack of treatment adherence for a variety of health problems. The statistics, worldwide and in the USA, are daunting. Excessive alcohol use is the third leading preventable cause of death in the United States (with 79,000 deaths annually), and is responsible for a wide range of health and social problems. On the positive side though, these behavioral health issues (and associated possible diseases) can often be prevented with relatively simple lifestyle changes, such as losing weight with a diet and/or physical exercise, or learning how to reduce alcohol consumption. Medicine has therefore started to move toward finding ways of preventively promoting wellness, rather than solely treating already established illness.^ Evidence-based patient-centered Brief Motivational Interviewing (BMI) interventions have been found particularly effective in helping people find intrinsic motivation to change problem behaviors after short counseling sessions, and to maintain healthy lifestyles over the long-term. Lack of locally available personnel well-trained in BMI, however, often limits access to successful interventions for people in need. To fill this accessibility gap, Computer-Based Interventions (CBIs) have started to emerge. Success of the CBIs, however, critically relies on insuring engagement and retention of CBI users so that they remain motivated to use these systems and come back to use them over the long term as necessary.^ Because of their text-only interfaces, current CBIs can therefore only express limited empathy and rapport, which are the most important factors of health interventions. Fortunately, in the last decade, computer science research has progressed in the design of simulated human characters with anthropomorphic communicative abilities. Virtual characters interact using humans’ innate communication modalities, such as facial expressions, body language, speech, and natural language understanding. By advancing research in Artificial Intelligence (AI), we can improve the ability of artificial agents to help us solve CBI problems.^ To facilitate successful communication and social interaction between artificial agents and human partners, it is essential that aspects of human social behavior, especially empathy and rapport, be considered when designing human-computer interfaces. Hence, the goal of the present dissertation is to provide a computational model of rapport to enhance an artificial agent’s social behavior, and to provide an experimental tool for the psychological theories shaping the model. Parts of this thesis were already published in [LYL+12, AYL12, AL13, ALYR13, LAYR13, YALR13, ALY14].^