5 resultados para Vehicle counting and classification
em Digital Commons at Florida International University
Resumo:
This research is to establish new optimization methods for pattern recognition and classification of different white blood cells in actual patient data to enhance the process of diagnosis. Beckman-Coulter Corporation supplied flow cytometry data of numerous patients that are used as training sets to exploit the different physiological characteristics of the different samples provided. The methods of Support Vector Machines (SVM) and Artificial Neural Networks (ANN) were used as promising pattern classification techniques to identify different white blood cell samples and provide information to medical doctors in the form of diagnostic references for the specific disease states, leukemia. The obtained results prove that when a neural network classifier is well configured and trained with cross-validation, it can perform better than support vector classifiers alone for this type of data. Furthermore, a new unsupervised learning algorithm---Density based Adaptive Window Clustering algorithm (DAWC) was designed to process large volumes of data for finding location of high data cluster in real-time. It reduces the computational load to ∼O(N) number of computations, and thus making the algorithm more attractive and faster than current hierarchical algorithms.
Resumo:
As congestion management strategies begin to put more emphasis on person trips than vehicle trips, the need for vehicle occupancy data has become more critical. The traditional methods of collecting these data include the roadside windshield method and the carousel method. These methods are labor-intensive and expensive. An alternative to these traditional methods is to make use of the vehicle occupancy information in traffic accident records. This method is cost effective and may provide better spatial and temporal coverage than the traditional methods. However, this method is subject to potential biases resulting from under- and over-involvement of certain population sectors and certain types of accidents in traffic accident records. In this dissertation, three such potential biases, i.e., accident severity, driver’s age, and driver’s gender, were investigated and the corresponding bias factors were developed as needed. The results show that although multi-occupant vehicles are involved in higher percentages of severe accidents than are single-occupant vehicles, multi-occupant vehicles in the whole accident vehicle population were not overrepresented in the accident database. On the other hand, a significant difference was found between the distributions of the ages and genders of drivers involved in accidents and those of the general driving population. An information system that incorporates adjustments for the potential biases was developed to estimate the average vehicle occupancies (AVOs) for different types of roadways on the Florida state roadway system. A reasonableness check of the results from the system shows AVO estimates that are highly consistent with expectations. In addition, comparisons of AVOs from accident data with the field estimates show that the two data sources produce relatively consistent results. While accident records can be used to obtain the historical AVO trends and field data can be used to estimate the current AVOs, no known methods have been developed to project future AVOs. Four regression models for the purpose of predicting weekday AVOs on different levels of geographic areas and roadway types were developed as part of this dissertation. The models show that such socioeconomic factors as income, vehicle ownership, and employment have a significant impact on AVOs.
Resumo:
As congestion management strategies begin to put more emphasis on person trips than vehicle trips, the need for vehicle occupancy data has become more critical. The traditional methods of collecting these data include the roadside windshield method and the carousel method. These methods are labor-intensive and expensive. An alternative to these traditional methods is to make use of the vehicle occupancy information in traffic accident records. This method is cost effective and may provide better spatial and temporal coverage than the traditional methods. However, this method is subject to potential biases resulting from under- and over-involvement of certain population sectors and certain types of accidents in traffic accident records. In this dissertation, three such potential biases, i.e., accident severity, driver¡¯s age, and driver¡¯s gender, were investigated and the corresponding bias factors were developed as needed. The results show that although multi-occupant vehicles are involved in higher percentages of severe accidents than are single-occupant vehicles, multi-occupant vehicles in the whole accident vehicle population were not overrepresented in the accident database. On the other hand, a significant difference was found between the distributions of the ages and genders of drivers involved in accidents and those of the general driving population. An information system that incorporates adjustments for the potential biases was developed to estimate the average vehicle occupancies (AVOs) for different types of roadways on the Florida state roadway system. A reasonableness check of the results from the system shows AVO estimates that are highly consistent with expectations. In addition, comparisons of AVOs from accident data with the field estimates show that the two data sources produce relatively consistent results. While accident records can be used to obtain the historical AVO trends and field data can be used to estimate the current AVOs, no known methods have been developed to project future AVOs. Four regression models for the purpose of predicting weekday AVOs on different levels of geographic areas and roadway types were developed as part of this dissertation. The models show that such socioeconomic factors as income, vehicle ownership, and employment have a significant impact on AVOs.
Resumo:
Two key solutions to reduce the greenhouse gas emissions and increase the overall energy efficiency are to maximize the utilization of renewable energy resources (RERs) to generate energy for load consumption and to shift to low or zero emission plug-in electric vehicles (PEVs) for transportation. The present U.S. aging and overburdened power grid infrastructure is under a tremendous pressure to handle the issues involved in penetration of RERS and PEVs. The future power grid should be designed with for the effective utilization of distributed RERs and distributed generations to intelligently respond to varying customer demand including PEVs with high level of security, stability and reliability. This dissertation develops and verifies such a hybrid AC-DC power system. The system will operate in a distributed manner incorporating multiple components in both AC and DC styles and work in both grid-connected and islanding modes. The verification was performed on a laboratory-based hybrid AC-DC power system testbed as hardware/software platform. In this system, RERs emulators together with their maximum power point tracking technology and power electronics converters were designed to test different energy harvesting algorithms. The Energy storage devices including lithium-ion batteries and ultra-capacitors were used to optimize the performance of the hybrid power system. A lithium-ion battery smart energy management system with thermal and state of charge self-balancing was proposed to protect the energy storage system. A grid connected DC PEVs parking garage emulator, with five lithium-ion batteries was also designed with the smart charging functions that can emulate the future vehicle-to-grid (V2G), vehicle-to-vehicle (V2V) and vehicle-to-house (V2H) services. This includes grid voltage and frequency regulations, spinning reserves, micro grid islanding detection and energy resource support. The results show successful integration of the developed techniques for control and energy management of future hybrid AC-DC power systems with high penetration of RERs and PEVs.
Resumo:
Two key solutions to reduce the greenhouse gas emissions and increase the overall energy efficiency are to maximize the utilization of renewable energy resources (RERs) to generate energy for load consumption and to shift to low or zero emission plug-in electric vehicles (PEVs) for transportation. The present U.S. aging and overburdened power grid infrastructure is under a tremendous pressure to handle the issues involved in penetration of RERS and PEVs. The future power grid should be designed with for the effective utilization of distributed RERs and distributed generations to intelligently respond to varying customer demand including PEVs with high level of security, stability and reliability. This dissertation develops and verifies such a hybrid AC-DC power system. The system will operate in a distributed manner incorporating multiple components in both AC and DC styles and work in both grid-connected and islanding modes. ^ The verification was performed on a laboratory-based hybrid AC-DC power system testbed as hardware/software platform. In this system, RERs emulators together with their maximum power point tracking technology and power electronics converters were designed to test different energy harvesting algorithms. The Energy storage devices including lithium-ion batteries and ultra-capacitors were used to optimize the performance of the hybrid power system. A lithium-ion battery smart energy management system with thermal and state of charge self-balancing was proposed to protect the energy storage system. A grid connected DC PEVs parking garage emulator, with five lithium-ion batteries was also designed with the smart charging functions that can emulate the future vehicle-to-grid (V2G), vehicle-to-vehicle (V2V) and vehicle-to-house (V2H) services. This includes grid voltage and frequency regulations, spinning reserves, micro grid islanding detection and energy resource support. ^ The results show successful integration of the developed techniques for control and energy management of future hybrid AC-DC power systems with high penetration of RERs and PEVs.^