6 resultados para Vegetatively Incompatible Biotypes
em Digital Commons at Florida International University
Resumo:
Melaleuca quinquenervia (Cav.) Blake (Myrtaceae) was imported into Florida from Australia over a century ago as a landscape plant. A favorable climate and periodic wildfires helped M. quinquenervia thrive; it now occupies about 200,000 hectares in southern Florida. A biological control (i.e., biocontrol) program against M. quinquenervia has been initiated, but not all biocontrol releases are successful. Some scientists have argued that poor biocontrol agent success may relate to genetic differences among populations of invasive weeds. I tested this premise by determining (1) the number and origins of M. quinquenervia introductions into Florida, (2) whether multiple introduction events resulted in the partitioning of Florida's M. quinquenervia populations into discrete biotypes, and (3) whether Oxyops vitiosa, an Australia snout beetle imported to control this weed, might discriminate among putative M. quinquenervia biotypes. Careful scrutiny of early horticultural catalogs and USDA plant introduction records suggested at least six distinct introduction events. Allozyme analyses indicated that the pattern of these introductions, and the subsequent redistribution of progeny, has resulted in geographic structuring of the populations in southern Florida. For example, trees on Florida's Gulf Coast had a greater effective number of alleles and exhibited greater heterozygosity than trees on the Atlantic Coast. Essential oil yields from M. quinquenervia leaves followed a similar trend; Gulf Coast trees yielded nearly twice as much oil as Atlantic Coast trees when both were grown in a common garden. These differences were partially explained by the predominance of a chemical phenotype (chemotype) very rich in the sesquiterpene (E)-nerolidol in M. quinquenervia trees from the Gulf Coast, but rich in a mixture of the monoterpene 1,8-cineole and the sesquiterpene viridiflorol in trees from the Atlantic Coast. Performance of O. vitiosa differed dramatically in laboratory studies depending on the chemotype of the foliage they were fed. Larval survivorship was four-fold greater on the (E)-nerolidol chemotype. Growth was also greater, with adult O. vitiosa gaining nearly 50% more biomass on the (E)-nerolidol plants than on the second chemotype. The results of this study thus confirmed the premise that plant genotype can affect the population dynamics of insects released as weed biocontrols. ^
Resumo:
A plant's reproductive biology exerts a significant influence on both population persistence within changing environments and successful establishment of new populations. However, the interaction between extrinsic (i.e. ecological) and intrinsic (i.e. genetic) factors also is an important driver of demographic performance for plant populations. It is light of this that I performed a multidisciplinary investigation of the breeding system, seed and seedling establishment dynamics, and population genetic structure of the endangered Caribbean vine Ipomoea microdactyla Griseb. (Convolvulaceae). The results from the breeding system study show individuals from Florida, USA and Andros Island, Bahamas to be self-incompatible. Plants from the two regions are cross-compatible but there is evidence for outbreeding depression in their progeny. Significant regional differences were found in floral traits and progeny traits that suggests incipient speciation for the Florida populations. The results from the seed and seedling establishment dynamics experiment demonstrate that the restoration of small populations in Florida via seed and seedling augmentation is a successful strategy. The demographic performance of the outplanted individuals was driven significantly by ecological factors (e.g. herbivory) rather than by genetic factors which emphasizes that the ecological context is very important for successful restoration attempts. The results from the population genetic study using an analysis of molecular variation (AMOVA) reveal significant differences in genetic variation among individuals from Florida, Andros, and Cuba. A Bayesian analysis of population genetic structuring coincided with the previous AMOVA results among the three regions. The Mantel test indicated significant 'isolation by distance' for these regional populations implying restricted gene flow over relatively short distances. Overall, the Florida populations had the lowest measures of genetic diversity which is most likely due to the effects of both colonization founder events and habitat fragmentation. The results of my study highlight the value of performing multidisciplinary studies in relation to species conservation as knowledge of both extrinsic and intrinsic factors can best guide decisions for species preservation.
Resumo:
In this study three aspects of sexual reproduction in Everglades plants were examined to more clearly understand seed dispersal and the allocation of resources to sexual reproduction—spatial dispersal process, temporal dispersal of seeds (seedbank), and germination patterns in the dominant species, sawgrass (Cladium jamaicense). Community assembly rules for fruit dispersal were deduced by analysis of functional traits associated with this process. Seedbank ecology was investigated by monitoring emergence of germinants from sawgrass soil samples held under varying water depths to determine the fate of dispersed seeds. Fine-scale study of sawgrass fruits yielded information on contributions to variation in sexually produced propagules in this species, which primarily reproduces vegetatively. It was hypothesized that Everglades plants possess a set of functional traits that enhance diaspore dispersal. To test this, 14 traits were evaluated among 51 species by factor analysis. The factorial plot of this analysis generated groups of related traits, with four suites of traits forming dispersal syndromes. Hydrochory traits were categorized by buoyancy and appendages enhancing buoyancy. Anemochory traits were categorized by diaspore size and appendages enhancing air movement. Epizoochory traits were categorized by diaspore size, buoyancy, and appendages allowing for attachment. Endozoochory traits were categorized by diaspore size, buoyancy, and appendages aiding diaspore presentation. These patterns/trends of functional trait organization also represent dispersal community assembly rules. Seeds dispersed by hydrochory were hypothesized to be caught most often in the edge of the north side of sawgrass patches. Patterns of germination and dispersal mode of all hydrochorous macrophytes with propagules in the seedbank were elucidated by germination analysis from 90 soil samples collected from 10 sawgrass patches. Mean site seed density was 486 seeds/m2 from 13 species. Most seeds collected at the north side of patches and significantly in the outer one meter of the patch edge (p = 0.013). Sawgrass seed germination was hypothesized to vary by site, among individual plants, and within different locations of a plant’s infructescence. An analysis of sawgrass fruits with nested ANOVAs found that collection site and interaction of site x individual plant significantly affect germination ability, seed viability, and fruit size (p ≤ 0.050). Fruit location within a plant’s infructescence did not significantly affect germination. As for allocation of resources to sexual reproduction, only 17.9% of sawgrass seeds germinated and only 4.8% of ungerminated seeds with fleshy endosperm were presumed viable, but dormant. Collectively, only 22% of all sawgrass seeds produced were viable.
Resumo:
Concession operations in natural areas have always been a source of controversy. The objectives of profit and preservation are seen by many to be incompatible. The author will examine the relationship of national park concessions and the environments in which they operate, focusing on concession selection and operation, using responsible tourism concepts as a guide
Resumo:
Established as a National Park in 1980, Biscayne National Park (BISC) comprises an area of nearly 700 km2 , of which most is under water. The terrestrial portions of BISC include a coastal strip on the south Florida mainland and a set of Key Largo limestone barrier islands which parallel the mainland several kilometers offshore and define the eastern rim of Biscayne Bay. The upland vegetation component of BISC is embedded within an extensive coastal wetland network, including an archipelago of 42 mangrove-dominated islands with extensive areas of tropical hardwood forests or hammocks. Several databases and vegetation maps describe these terrestrial communities. However, these sources are, for the most part, outdated, incomplete, incompatible, or/and inaccurate. For example, the current, Welch et al. (1999), vegetation map of BISC is nearly 10 years old and represents the conditions of Biscayne National Park shortly after Hurricane Andrew (August 24, 1992). As a result, a new terrestrial vegetation map was commissioned by The National Park Service Inventory and Monitoring Program South Florida / Caribbean Network.
Resumo:
In this study three aspects of sexual reproduction in Everglades plants were examined to more clearly understand seed dispersal and the allocation of resources to sexual reproduction— spatial dispersal process, temporal dispersal of seeds (seedbank), and germination patterns in the dominant species, sawgrass (Cladium jamaicense). Community assembly rules for fruit dispersal were deduced by analysis of functional traits associated with this process. Seedbank ecology was investigated by monitoring emergence of germinants from sawgrass soil samples held under varying water depths to determine the fate of dispersed seeds. Fine-scale study of sawgrass fruits yielded information on contributions to variation in sexually produced propagules in this species, which primarily reproduces vegetatively. It was hypothesized that Everglades plants possess a set of functional traits that enhance diaspore dispersal. To test this, 14 traits were evaluated among 51 species by factor analysis. The factorial plot of this analysis generated groups of related traits, with four suites of traits forming dispersal syndromes. Hydrochory traits were categorized by buoyancy and appendages enhancing buoyancy. Anemochory traits were categorized by diaspore size and appendages enhancing air movement. Epizoochory traits were categorized by diaspore size, buoyancy, and appendages allowing for attachment. Endozoochory traits were categorized by diaspore size, buoyancy, and appendages aiding diaspore presentation. These patterns/trends of functional trait organization also represent dispersal community assembly rules. Seeds dispersed by hydrochory were hypothesized to be caught most often in the edge of the north side of sawgrass patches. Patterns of germination and dispersal mode of all hydrochorous macrophytes with propagules in the seedbank were elucidated by germination analysis from 90 soil samples collected from 10 sawgrass patches. Mean site seed density was 486 seeds/m2 from 13 species. Most seeds collected at the north side of patches and significantly in the outer one meter of the patch edge (p = 0.013). Sawgrass seed germination was hypothesized to vary by site, among individual plants, and within different locations of a plant’s infructescence. An analysis of sawgrass fruits with nested ANOVAs found that collection site and interaction of site x individual plant significantly affect germination ability, seed viability, and fruit size (p < 0.050). Fruit location within a plant’s infructescence did not significantly affect germination. As for allocation of resources to sexual reproduction, only 17.9% of sawgrass seeds germinated and only 4.8% of ungerminated seeds with fleshy endosperm were presumed viable, but dormant. Collectively, only 22% of all sawgrass seeds produced were viable.