6 resultados para Variations
em Digital Commons at Florida International University
Resumo:
Two Barremian-Aptian sequences studied in Durango and Nuevo Leon States, northeastern Mexico include three lithic units which have been described as the Cupido Formation of Barremian-early Early Aptian age, its lateral equivalent, the Lower Tamaulipas Formation, and the La Peña Formation extending through the early Albian. ^ The present work improves the existing ammonite Aptian biozonation by considering constraints associated with a discontinuous spatial and temporal record of the different taxa within the La Peña Formation. ^ Four ammonite biozones are established: (1) The Dufrenoyia justinae Zone for the late Early Aptian, (2) The Burckhardtites nazasensis/Rhytidoplites robertsi Zone for the middle Aptian, (3) The Cheloniceras inconstans Zone for the early Late Aptian, and (4) The Hypacanthoplites cf. leanzae Zone for the late late Aptian. ^ Also, a detailed sedimentological analysis of the sections shed further light on the possible causes that controlled intermittent occurrences of the ammonites in relation to the prevailing paleoceanographic and paleoecologic conditions in northeastern Mexico during the late Barremian-Aptian. ^ Microfacies analyses show that the upper part of the Cupido facies are represented by biocalcirudite with rudists, biocalcarenites with oolites and algae, and rich benthonic foraminifera assemblages with ostracods. These facies are related to paleoceanographic conditions of sedimentation within a shallow-marine carbonate platform. Its lateral equivalent, deep-water facies extended to the southeast and it is represented by the Lower Tamaulipas Formation, which includes planktonic foraminifera, ostracods, and mollusk and echinoid fragments. The beginning of deposition of the La Peña Formation in the late Early Aptian is characterized by an increase in terrigenous materials and significant decrease in the abundance of benthic fauna. The La Peña Formation is recognized by an alternation of marls and shale limestones containing ammonites, planktonic foraminifera, ostracods, and radiolaria toward the top. Accumulation of the La Peña continued throughout the end of the Aptian and records changes in conditions of sedimentation and productivity in the water column, which abruptly terminated the carbonate deposition in the Cupido Platform. ^ Results of carbon/carbonate content analyses show that changes from the Cupido to the La Peña facies are also characterized by an increase of organic carbon, which indicate the onset of enhanced dysoxic/anoxic conditions in the lower water column. ^
Resumo:
This note presents a method of distinguishing the source of freshwater that causes reductions in salinity in the coastal environment of South Florida. This technique, which uses the 18O and D of the water, allows for differentiation of the freshwater derived from precipitation as opposed to runoff, because surface waters in the Everglades have been highly evaporated and therefore have elevated 18O and dD values relative to precipitation. A time series of monthly 18O and D values of surface waters, collected from stations in Florida Bay between 1993 and 1999, has shown that, during this time, the major source of freshwaters causing depressions in the salinity in the western portion of Florida Bay was derived from precipitation rather than from the runoff of water from the Everglades. In the eastern portion of Florida Bay, close to the boundary between peninsular Florida and the Bay, the proportion of freshwater derived from precipitation drops steadily, reaching <10%. This method not only allows differentiation between the sources of freshwater but can, in a temporal sense, ascertain the effectiveness of water management practices on the salinity of the estuarine ecosystems of South Florida.
Resumo:
Two Barremian-Aptian sequences studied in Durango and Nuevo Leon States, northeastern Mexico include three lithic units which have been described as the Cupido Formation of Barremian-early Early Aptian age, its lateral equivalent, the Lower Tamaulipas Formation, and the La Pena Formation extending through the early Albian. The present work improves the existing ammonite Aptian biozonation by considering constraints associated with a discontinuous spatial and temporal record of the different taxa within the La Pena Formation. Four ammonite biozones are established: 1) The Dufrenoyia justinae Zone for the late Early Aptian, 2) The Burckhardtites nazasensis/Rhytidoplites robertsi Zone for the middle Aptian, 3) The Cheloniceras inconstans Zone for the early Late Aptian, and 4) The Hypacanthoplites cf. leanzae Zone for the late late Aptian. Also, a detailed sedimentological analysis of the sections shed further light on the possible causes that controlled intermittent occurrences of the ammonites in relation to the prevailing paleoceanographic and paleoecologic conditions in northeastern Mexico during the late Barremian-Aptian. Microfacies analyses show that the upper part of the Cupido facies are represented by biocalcirudite with rudists, biocalcarenites with oolites and algae, and rich benthonic foraminifera assemblages with ostracods. These facies are related to paleoceanographic conditions of sedimentation within a shallow-marine carbonate platform. Its lateral equivalent, deep-water facies extended to the southeast and it is represented by the Lower Tamaulipas Formation, which includes planktonic foraminifera, ostracods, and mollusk and echinoid fragments. The beginning of deposition of the La Pena Formation in the late Early Aptian is characterized by an increase in terrigenous materials and significant decrease in the abundance of benthic fauna. The La Pena Formation is recognized by an alternation of marls and shale limestones containing ammonites, planktonic foraminifera, ostracods, and radiolaria toward the top. Accumulation of the La Pena continued throughout the end of the Aptian and records changes in conditions of sedimentation and productivity in the water column, which abruptly terminated the carbonate deposition in the Cupido Platform. Results of carbon/carbonate content analyses show that changes from the Cupido to the La Pena facies are also characterized by an increase of organic carbon, which indicate the onset of enhanced dysoxic/anoxic conditions in the lower water column.
Resumo:
Variations in trace element abundances with depth in soils and sediments may be due to natural processes or reflect anthropogenic influences. The depth related variations of five major elements (Fe, Si, Al, Ca and Mg), seventeen trace elements (Mn, Cr, Ti, P, Ni, Ba, Sc, Sr, Sb, Zn, Pb, Cd, Co, V, Be, Cu and Y) and volatile loss patterns were examined for sediment cores from five sites in South Florida (Lake Okeechobee, SFWMD Water Conservation area 3B, F.I.U., the Everglades and Chekika State Recreation Area). Principal component analysis of the chemical data combined with microscopic examination of the soils reveal that depth-related variations can be explained by varying proportions of three natural soil constituents and one anthropogenic component. The results can be used as a geochemical baseline for human influence on South Florida soils.
Resumo:
El Niño and the Southern Oscillation (ENSO) is a cycle that is initiated in the equatorial Pacific Ocean and is recognized on interannual timescales by oscillating patterns in tropical Pacific sea surface temperatures (SST) and atmospheric circulations. Using correlation and regression analysis of datasets that include SST’s and other interdependent variables including precipitation, surface winds, sea level pressure, this research seeks to quantify recent changes in ENSO behavior. Specifically, the amplitude, frequency of occurrence, and spatial characteristics (i.e. events with maximum amplitude in the Central Pacific versus the Eastern Pacific) are investigated. The research is based on the question; “Are the statistics of ENSO changing due to increasing greenhouse gas concentrations?” Our hypothesis is that the present-day changes in amplitude, frequency, and spatial characteristics of ENSO are determined by the natural variability of the ocean-atmosphere climate system, not the observed changes in the radiative forcing due to change in the concentrations of greenhouse gases. Statistical analysis, including correlation and regression analysis, is performed on observational ocean and atmospheric datasets available from the National Oceanographic and Atmospheric Administration (NOAA), National Center for Atmospheric Research (NCAR) and coupled model simulations from the Coupled Model Inter-comparison Project (phase 5, CMIP5). Datasets are analyzed with a particular focus on ENSO over the last thirty years. Understanding the observed changes in the ENSO phenomenon over recent decades has a worldwide significance. ENSO is the largest climate signal on timescales of 2 - 7 years and affects billions of people via atmospheric teleconnections that originate in the tropical Pacific. These teleconnections explain why changes in ENSO can lead to climate variations in areas including North and South America, Asia, and Australia. For the United States, El Niño events are linked to decreased number of hurricanes in the Atlantic basin, reduction in precipitation in the Pacific Northwest, and increased precipitation throughout the southern United Stated during winter months. Understanding variability in the amplitude, frequency, and spatial characteristics of ENSO is crucial for decision makers who must adapt where regional ecology and agriculture are affected by ENSO.
Resumo:
El Niño and the Southern Oscillation (ENSO) is a cycle that is initiated in the equatorial Pacific Ocean and is recognized on interannual timescales by oscillating patterns in tropical Pacific sea surface temperatures (SST) and atmospheric circulations. Using correlation and regression analysis of datasets that include SST’s and other interdependent variables including precipitation, surface winds, sea level pressure, this research seeks to quantify recent changes in ENSO behavior. Specifically, the amplitude, frequency of occurrence, and spatial characteristics (i.e. events with maximum amplitude in the Central Pacific versus the Eastern Pacific) are investigated. The research is based on the question; “Are the statistics of ENSO changing due to increasing greenhouse gas concentrations?” Our hypothesis is that the present-day changes in amplitude, frequency, and spatial characteristics of ENSO are determined by the natural variability of the ocean-atmosphere climate system, not the observed changes in the radiative forcing due to change in the concentrations of greenhouse gases. Statistical analysis, including correlation and regression analysis, is performed on observational ocean and atmospheric datasets available from the National Oceanographic and Atmospheric Administration (NOAA), National Center for Atmospheric Research (NCAR) and coupled model simulations from the Coupled Model Inter-comparison Project (phase 5, CMIP5). Datasets are analyzed with a particular focus on ENSO over the last thirty years. Understanding the observed changes in the ENSO phenomenon over recent decades has a worldwide significance. ENSO is the largest climate signal on timescales of 2 - 7 years and affects billions of people via atmospheric teleconnections that originate in the tropical Pacific. These teleconnections explain why changes in ENSO can lead to climate variations in areas including North and South America, Asia, and Australia. For the United States, El Niño events are linked to decreased number of hurricanes in the Atlantic basin, reduction in precipitation in the Pacific Northwest, and increased precipitation throughout the southern United Stated during winter months. Understanding variability in the amplitude, frequency, and spatial characteristics of ENSO is crucial for decision makers who must adapt where regional ecology and agriculture are affected by ENSO.