3 resultados para Variable Parameters Control Charts
em Digital Commons at Florida International University
Resumo:
This dissertation studies newly founded U.S. firms' survival using three different releases of the Kauffman Firm Survey. I study firms' survival from a different perspective in each chapter. ^ The first essay studies firms' survival through an analysis of their initial state at startup and the current state of the firms as they gain maturity. The probability of survival is determined using three probit models, using both firm-specific variables and an industry scale variable to control for the environment of operation. The firm's specific variables include size, experience and leverage as a debt-to-value ratio. The results indicate that size and relevant experience are both positive predictors for the initial and current states. Debt appears to be a predictor of exit if not justified wisely by acquiring assets. As suggested previously in the literature, entering a smaller-scale industry is a positive predictor of survival from birth. Finally, a smaller-scale industry diminishes the negative effects of debt. ^ The second essay makes use of a hazard model to confirm that new service-providing (SP) firms are more likely to survive than new product providers (PPs). I investigate the possible explanations for the higher survival rate of SPs using a Cox proportional hazard model. I examine six hypotheses (variations in capital per worker, expenses per worker, owners' experience, industry wages, assets and size), none of which appear to explain why SPs are more likely than PPs to survive. Two other possibilities are discussed: tax evasion and human/social relations, but these could not be tested due to lack of data. ^ The third essay investigates women-owned firms' higher failure rates using a Cox proportional hazard on two models. I make use of a never-before used variable that proxies for owners' confidence. This variable represents the owners' self-evaluated competitive advantage. ^ The first empirical model allows me to compare women's and men's hazard rates for each variable. In the second model I successively add the variables that could potentially explain why women have a higher failure rate. Unfortunately, I am not able to fully explain the gender effect on the firms' survival. Nonetheless, the second empirical approach allows me to confirm that social and psychological differences among genders are important in explaining the higher likelihood to fail in women-owned firms.^
Resumo:
With the advantages and popularity of Permanent Magnet (PM) motors due to their high power density, there is an increasing incentive to use them in variety of applications including electric actuation. These applications have strict noise emission standards. The generation of audible noise and associated vibration modes are characteristics of all electric motors, it is especially problematic in low speed sensorless control rotary actuation applications using high frequency voltage injection technique. This dissertation is aimed at solving the problem of optimizing the sensorless control algorithm for low noise and vibration while achieving at least 12 bit absolute accuracy for speed and position control. The low speed sensorless algorithm is simulated using an improved Phase Variable Model, developed and implemented in a hardware-in-the-loop prototyping environment. Two experimental testbeds were developed and built to test and verify the algorithm in real time.^ A neural network based modeling approach was used to predict the audible noise due to the high frequency injected carrier signal. This model was created based on noise measurements in an especially built chamber. The developed noise model is then integrated into the high frequency based sensorless control scheme so that appropriate tradeoffs and mitigation techniques can be devised. This will improve the position estimation and control performance while keeping the noise below a certain level. Genetic algorithms were used for including the noise optimization parameters into the developed control algorithm.^ A novel wavelet based filtering approach was proposed in this dissertation for the sensorless control algorithm at low speed. This novel filter was capable of extracting the position information at low values of injection voltage where conventional filters fail. This filtering approach can be used in practice to reduce the injected voltage in sensorless control algorithm resulting in significant reduction of noise and vibration.^ Online optimization of sensorless position estimation algorithm was performed to reduce vibration and to improve the position estimation performance. The results obtained are important and represent original contributions that can be helpful in choosing optimal parameters for sensorless control algorithm in many practical applications.^
Resumo:
The standard highway assignment model in the Florida Standard Urban Transportation Modeling Structure (FSUTMS) is based on the equilibrium traffic assignment method. This method involves running several iterations of all-or-nothing capacity-restraint assignment with an adjustment of travel time to reflect delays encountered in the associated iteration. The iterative link time adjustment process is accomplished through the Bureau of Public Roads (BPR) volume-delay equation. Since FSUTMS' traffic assignment procedure outputs daily volumes, and the input capacities are given in hourly volumes, it is necessary to convert the hourly capacities to their daily equivalents when computing the volume-to-capacity ratios used in the BPR function. The conversion is accomplished by dividing the hourly capacity by a factor called the peak-to-daily ratio, or referred to as CONFAC in FSUTMS. The ratio is computed as the highest hourly volume of a day divided by the corresponding total daily volume. ^ While several studies have indicated that CONFAC is a decreasing function of the level of congestion, a constant value is used for each facility type in the current version of FSUTMS. This ignores the different congestion level associated with each roadway and is believed to be one of the culprits of traffic assignment errors. Traffic counts data from across the state of Florida were used to calibrate CONFACs as a function of a congestion measure using the weighted least squares method. The calibrated functions were then implemented in FSUTMS through a procedure that takes advantage of the iterative nature of FSUTMS' equilibrium assignment method. ^ The assignment results based on constant and variable CONFACs were then compared against the ground counts for three selected networks. It was found that the accuracy from the two assignments was not significantly different, that the hypothesized improvement in assignment results from the variable CONFAC model was not empirically evident. It was recognized that many other factors beyond the scope and control of this study could contribute to this finding. It was recommended that further studies focus on the use of the variable CONFAC model with recalibrated parameters for the BPR function and/or with other forms of volume-delay functions. ^