2 resultados para Valves (mechanical)

em Digital Commons at Florida International University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Neural Crest (NC) is a multipotential group of cells that arises from the dorsal aspect of the neural tube early in development. It is well established that a group of NC cells named Cardiac Neural Crest (CNC) migrates to the heart and plays a critical role in the remodeling of the aortic arch arteries and septation of the outflow tract. In this study, using the mouse mutant Pax3sp/sp that has CNC deficits I have identified a putative novel role for the CNC in regulating apoptosis in the atrioventricular (AV) endocardial cushion. The AV endocardial cushion undergoes remodeling to give rise to the cardiac AV valves. Using a transgenic mouse that carries the LacZ reporter gene under the control of the Dopachrome tautomerase promoter (Dct-LacZ), I found that another NC derived population, melanocyte precursors, also contribute to the AV endocardial cushion and developing AV valves. The analysis of Dct-LacZ embryos at different stages showed that NC cells already committed to the melanocytic fate migrate to the heart along the same initial pathway taken by those that will populate the skin. Hypopigmented mice carrying mutations in the Kit and Endothelin receptor b genes, that are critical for the proper development of skin melanocytes, do not have cardiac melanocytes indicating that cardiac and skin melanocyte precursors share the same initial signaling requirements. The analysis of murine adult hearts showed that melanocytes are mostly found in the atrial sides of the tricuspid and mitral valve leaflets. The distribution of melanocytes in the AV valves corresponds exactly to areas of high Versican B expression, a proteoglycan essential for the process of AV valve remodeling. To evaluate a potential role for melanocytes in the AV valves, a nanoindentation analysis of the tricuspid valves of wild type, hypopigmented and hyperpigmented mice was performed. The storage modulus, a measure of stiffness, for the leaflets obtained from hyperpigmented mice was considerably higher (10.5GPa) than that for the leaflets from wild type (7.5GPa) and hypopigmented animals (between 3.5 and 5.5 GPa) suggesting that melanocytes may contribute to the mechanical properties of the AV valves.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Synthetic tri-leaflet heart valves generally fail in the long-term use (more than 10 years). Tearing and calcification of the leaflets usually cause failure of these valves as a consequence of high tensile and bending stresses borne on the material. The primary purpose of this study was to explore the possibilities of a new polymer composite to be used as synthetic tri-leaflet heart valve material. This composite was comprised of polystyrene-polyisobutylene-polystyrene (Quatromer), a proprietary polymer, embedded with continuous polypropylene (PP) fibers. Quatromer had been found to be less likely to degrade in vivo than polyurethane. Moreover, it was postulated that a decrease in tears and perforations might result from fiber-reinforced leaflets reducing high stresses on the leaflets. The static and dynamic mechanical properties of the Quatromer/PP composite were compared with those of an implant-approved polyurethane (PU) for cardiovascular applications. Results show that the reinforcement of Quatromer with PP fibers improves both its static and dynamic properties as compared to the PU. Hence, this composite has the potential to be a more suitable material for synthetic tri-leaflet heart valves.