5 resultados para Valosin containing protein (p97)
em Digital Commons at Florida International University
Resumo:
Most pharmaceutically relevant proteins and many extracellular proteins contain disulfide bonds. Formation of the correct disulfide bonds is essential for stability in almost all cases. Disulfide containing proteins can be rapidly and inexpensively overexpressed in bacteria. However, the overexpressed proteins usually form aggregates inside the bacteria, called inclusion bodies, which contains inactive and non-native protein. To obtain native protein, inclusion bodies need to be isolated and resolubilized, and then the resulting protein refolded in vitro. In vitro protein folding is aided by the addition of a redox buffer, which is composed of a small molecule disulfide and/or a small molecule thiol. The most commonly used redox buffer contains reduced and oxidized glutathione. Recently, aliphatic dithiols and aromatic monothiols have been employed as redox buffers. Aliphatic dithiols improved the yield of native protein as compared to the aliphatic thiol, glutathione. Dithiols mimic the in vivo protein folding catalyst, protein disulfide isomerase, which has two thiols per active site. Furthermore, aromatic monothiols increased the folding rate and yield of lysozyme and RNase A relative to glutathione. By combining the beneficial properties of aliphatic dithiols and aromatic monothiols, aromatic dithiols were designed and were expected to increase in vitro protein folding rates and yields. Aromatic monothiols (1-4) and their corresponding disulfides (5-8), two series of ortho- and para-substituted ethylene glycol dithiols (9-15), and a series of aromatic quaternary ammonium salt dithiols (16-17) were synthesized on a multigram scale. Monothiols and disulfides (1-8) were utilized to fold lysozyme and bovine pancreatic trypsin inhibitor. Dithiols (11-17) were tested for their ability to fold lysozyme. At pH 7.0 and pH 8.0, and high protein concentration (1 mg/mL), aromatic dithiols (16, 17) and a monothiol (3) significantly enhanced the in vitro folding rate and yield of lysozyme relative to the aliphatic thiol, glutathione. Additionally, aromatic dithiols (16, 17) significantly enhance the folding yield as compared to the corresponding aromatic monothiol (3). Thus, the folding rate and yield enhancements achieved in in vitro protein folding at high protein concentration will decrease the volume of renaturation solution required for large scale processes and consequently reduce processing time and cost.
Resumo:
C-reactive protein (CRP), a normally occurring human plasma protein may become elevated as much as 1,000 fold during disease states involving acute inflammation or tissue damage. Through its binding to phosphorylcholine in the presence of calcium, CRP has been shown to potentiate the activation of complement, stimulate phagocytosis and opsonize certain microorganisms. Utilizing a flow cytometric functional ligand binding assay I have demonstrated that a monocyte population in human peripheral blood and specific human-derived myelomonocytic cell lines reproducibly bind an evolutionarily conserved conformational pentraxin epitope on human CRP through a mechanism that does not involve its ligand, phosphorylcholine. ^ A variety of cell lines at different stages of differentiation were examined. The monocytic cell line, THP-1, bound the most CRP followed by U937 and KG-1a cells. The HL-60 cell line was induced towards either the granulocyte or monocyte pathway with DMSO or PMA, respectively. Untreated HL-60 cells or DMSO-treated cells did not bind CRP while cells treated with PMA showed increased binding of CRP, similar to U-937 cells. T cell and B-cell derived lines were negative. ^ Inhibition studies with Limulin and human SAP demonstrated that the binding site is a conserved pentraxin epitope. The calcium requirement necessary for binding to occur indicated that the cells recognize a conformational form of CRP. Phosphorylcholine did not inhibit the reaction therefore the possibility that CRP had bound to damaged membranes with exposed PC sites was discounted. ^ A study of 81 normal donors using flow cytometry demonstrated that a majority of peripheral blood monocytes (67.9 ± 1.3, mean ± sem) bound CRP. The percentage of binding was normally distributed and not affected by gender, age or ethnicity. Whole blood obtained from donors representing a variety of disease states showed a significant reduction in the level of CRP bound by monocytes in those donors classified with infection, inflammation or cancer. This reduction in monocyte populations binding CRP did not correlate with the concentration of plasma CRP. ^ The ability of monocytes to specifically bind CRP combined with the binding reactivity of the protein itself to a variety of phosphorylcholine containing substances may represent an important bridge between innate and adaptive immunity. ^
Resumo:
Despite of its known toxicity and potential to cause cancer, arsenic has been proven to be a very important tool for the treatment of various refractory neoplasms. One of the promising arsenic-containing chemotherapeutic agents in clinical trials is Darinaparsin (dimethylarsinous glutathione, DMA III(GS)). In order to understand its toxicity and therapeutic efficacy, the metabolism of Darinaparsin in human cancer cells was evaluated. With the aim of detecting all potential intermediates and final products of the biotransformation of Darinaparsin and other arsenicals, an analytical method employing high performance liquid chromatography inductively coupled mass spectrometry (HPLC-ICP-MS) was developed. This method was shown to be capable of separating and detecting fourteen human arsenic metabolites in one chromatographic run. The developed analytical technique was used to evaluate the metabolism of Darinaparsin in human cancer cells. The major metabolites of Darinaparsin were identified as dimethylarsinic acid (DMAV), DMA III(GS), and dimethylarsinothioyl glutathione (DMMTAV(GS)). Moreover, the method was employed to study the conditions and mechanisms of formation of thiol-containing arsenic metabolites from DMAIII(GS) and DMAV as the mechanisms of formation of these important As species were unknown. The arsenic sulfur compounds studied included but were not limited to the newly discovered human arsenic metabolite DMMTA V(GS) and the unusually highly toxic dimethylmonothioarsinic acid (DMMTAV). It was found that these species may form from hydrogen sulfide produced in enzymatic reactions or by utilizing the sulfur present in protein persulfides. Possible pathways of thiolated arsenical formation were proposed and supporting data for their existence provided. In addition to known mechanism of arsenic toxicity such as protein-binding and reactive oxygen formation, it was proposed that the utilization of thiols from protein persulfides during the formation of thiolated arsenicals may be an additional mechanism of toxicity. The toxicities of DMAV(GS), DMMTA V, and DMMTAV(GS) were evaluated in cancer cells, and the ability of these cells to take the compounds up were compared. When assessing the toxicity by exposing multiple myeloma cells to arsenicals externally, DMMTAV(GS) was much less toxic than DMAIII(GS) and DMMTAV, probably as a result of its very limited uptake (less than 10% and 16% of DMAIII(GS) and DMMTAV respectively).^
Resumo:
Chemical warfare agents continue to pose a global threat despite the efforts of the international community to prohibit their use in warfare. For this reason, improvement in the detection of these compounds remains of forensic interest. Protein adducts formed by the covalent modification of an electrophilic xenobiotic and a nucleophilic amino acid may provide a biomarker of exposure that is stable and specific to compounds of interest (such as chemical warfare agents), and have the capability to extend the window of detection further than the parent compound or circulating metabolites. This research investigated the formation of protein adducts of the nitrogen mustard chemical warfare agents mechlorethamine (HN-2) and tris(2-chloroethyl)amine (HN-3) to lysine and histidine residues found on the blood proteins hemoglobin and human serum albumin. Identified adducts were assessed for reproducibility and stability both in model peptide and whole protein assays. Specificity of these identified adducts was assessed using in vitro assays to metabolize common therapeutic drugs containing nitrogen mustard moieties. Results of the model peptide assays demonstrated that HN-2 and HN-3 were able to form stable adducts with lysine and histidine residues under physiological conditions. Results for whole protein assays identified three histidine adducts on hemoglobin, and three adducts (two lysine residues and one histidine residue) on human serum albumin that were previously unknown. These protein adducts were determined to be reproducible and stable at physiological conditions over a three-week analysis period. Results from the in vitro metabolic assays revealed that adducts formed by HN-2 and HN-3 are specific to these agents, as metabolized therapeutic drugs (chlorambucil, cyclophosphamide, and melphalan) did not form the same adducts on lysine or histidine residues as the previously identified adducts formed by HN-2 and HN-3. Results obtained from the model peptide and full protein work were enhanced by comparing experimental data to theoretical calculations for adduct formation, providing further confirmatory data. This project was successful in identifying and characterizing biomarkers of exposure to HN-2 and HN-3 that are specific and stable and which have the potential to be used for the forensic determination of exposure to these dangerous agents.
Resumo:
Almost all pharmaceutically relevant proteins and many extracellular proteins contain disulfide bonds, which are essential for protein functions. In many cases, disulfidecontaining proteins are produced via in vitro protein folding that involves the oxidation of reduced protein to native protein, a complex process. The in vitro folding of reduced lysozyme has been extensively studied as a model system because native lysozyme is small, inexpensive, and has only four disulfide bonds. The folding of reduced lysozyme is conducted with the aid of a redox buffer consisting of a small molecule disulfide and a small molecule thiol, such as oxidized and reduced glutathione. Herein, in vitro folding rates and yields of lysozyme obtained in the presence of a series of aromatic thiols and oxidized glutathione are compared to those obtained with reduced and oxidized glutathione. Results showed that aromatic thiols significantly increase the folding rate of lysozyme compared to glutathione.