9 resultados para VOCs
em Digital Commons at Florida International University
Resumo:
The Locard exchange principle proposes that a person can not enter or leave an area or come in contact with an object, without an exchange of materials. In the case of scent evidence, the suspect leaves his scent in the location of the crime scene itself or on objects found therein. Human scent evidence collected from a crime scene can be evaluated through the use of specially trained canines to determine an association between the evidence and a suspect. To date, there has been limited research as to the volatile organic compounds (VOCs) which comprise human odor and their usefulness in distinguishing among individuals. For the purposes of this research, human scent is defined as the most abundant volatile organic compounds present in the headspace above collected odor samples. ^ An instrumental method has been created for the analysis of the VOCs present in human scent, and has been utilized for the optimization of materials used for the collection and storage of human scent evidence. This research project has identified the volatile organic compounds present in the headspace above collected scent samples from different individuals and various regions of the body, with the primary focus involving the armpit area and the palms of the hands. Human scent from the armpit area and palms of an individual sampled over time shows lower variation in the relative peak area ratio of the common compounds present than what is seen across a population. A comparison of the compounds present in human odor for an individual over time, and across a population has been conducted and demonstrates that it is possible to instrumentally differentiate individuals based on the volatile organic compounds above collected odor samples. ^
Resumo:
In certain European countries and the United States of America, canines have been successfully used in human scent identification. There is however, limited scientific knowledge on the composition of human scent and the detection mechanism that produces an alert from canines. This lack of information has resulted in successful legal challenges to human scent evidence in the courts of law. ^ The main objective of this research was to utilize science to validate the current practices of using human scent evidence in criminal cases. The goals of this study were to utilize Headspace Solid Phase Micro Extraction Gas Chromatography Mass Spectrometry (HS-SPME-GC/MS) to determine the optimum collection and storage conditions for human scent samples, to investigate whether the amount of DNA deposited upon contact with an object affects the alerts produced by human scent identification canines, and to create a prototype pseudo human scent which could be used for training purposes. ^ Hand odor samples which were collected on different sorbent materials and exposed to various environmental conditions showed that human scent samples should be stored without prolonged exposure to UVA/UVB light to allow minimal changes to the overall scent profile. Various methods of collecting human scent from objects were also investigated and it was determined that passive collection methods yields ten times more VOCs by mass than active collection methods. ^ Through the use of polymerase chain reaction (PCR) no correlation was found between the amount of DNA that was deposited upon contact with an object and the alerts that were produced by human scent identification canines. Preliminary studies conducted to create a prototype pseudo human scent showed that it is possible to produce fractions of a human scent sample which can be presented to the canines to determine whether specific fractions or the entire sample is needed to produce alerts by the human scent identification canines. ^
Resumo:
Establishing an association between the scent a perpetrator left at a crime scene to the odor of the suspect of that crime is the basis for the use of human scent identification evidence in a court of law. Law enforcement agencies gather evidence through the collection of scent from the objects that a perpetrator may have handled during the execution of the criminal act. The collected scent evidence is consequently presented to the canines for identification line-up procedures with the apprehended suspects. Presently, canine scent identification is admitted as expert witness testimony, however, the accurate behavior of the dogs and the scent collection methods used are often challenged by the court system. The primary focus of this research project entailed an evaluation of contact and non-contact scent collection techniques with an emphasis on the optimization of collection materials of different fiber chemistries to evaluate the chemical odor profiles obtained using varying environment conditions to provide a better scientific understanding of human scent as a discriminative tool in the identification of suspects. The collection of hand odor from female and male subjects through both contact and non-contact sampling approaches yielded new insights into the types of VOCs collected when different materials are utilized, which had never been instrumentally performed. Furthermore, the collected scent mass was shown to be obtained in the highest amounts for both gender hand odor samples on cotton sorbent materials. Compared to non-contact sampling, the contact sampling methods yielded a higher number of volatiles, an enhancement of up to 3 times, as well as a higher scent mass than non-contact methods by more than an order of magnitude. The evaluation of the STU-100 as a non-contact methodology highlighted strong instrumental drawbacks that need to be targeted for enhanced scientific validation of current field practices. These results demonstrated that an individual's human scent components vary considerably depending on the method used to collect scent from the same body region. This study demonstrated the importance of collection medium selection as well as the collection method employed in providing a reproducible human scent sample that can be used to differentiate individuals.
Resumo:
There is limited scientific knowledge on the composition of human odor from different biological specimens and the effect that physiological and psychological health conditions could have on them. There is currently no direct comparison of the volatile organic compounds (VOCs) emanating from different biological specimens collected from healthy individuals as well as individuals with certain diagnosed medical conditions. Therefore the question of matching VOCs present in human odor across various biological samples and across health statuses remains unanswered. The main purpose of this study was to use analytical instrumental methods to compare the VOCs from different biological specimens from the same individual and to compare the populations evaluated in this project. The goals of this study were to utilize headspace solid-phase microextraction gas chromatography mass spectrometry (HS-SPME-GC/MS) to evaluate its potential for profiling VOCs from specimens collected using standard forensic and medical methods over three different populations: healthy group with no diagnosed medical or psychological condition, one group with diagnosed type 2 diabetes, and one group with diagnosed major depressive disorder. The pre-treatment methods of collection materials developed for the study allowed for the removal of targeted VOCs from the sampling kits prior to sampling, extraction and analysis. Optimized SPME-GC/MS conditions has been demonstrated to be capable of sampling, identifying and differentiating the VOCs present in the five biological specimens collected from different subjects and yielded excellent detection limits for the VOCs from buccal swab, breath, blood, and urine with average limits of detection of 8.3 ng. Visual, Spearman rank correlation, and PCA comparisons of the most abundant and frequent VOCs from each specimen demonstrated that each specimen has characteristic VOCs that allow them to be differentiated for both healthy and diseased individuals. Preliminary comparisons of VOC profiles of healthy individuals, patients with type 2 diabetes, and patients with major depressive disorder revealed compounds that could be used as potential biomarkers to differentiate between healthy and diseased individuals. Finally, a human biological specimen compound database has been created compiling the volatile compounds present in the emanations of human hand odor, oral fluids, breath, blood, and urine.
Resumo:
Human scent, or the volatile organic compounds (VOCs) produced by an individual, has been recognized as a biometric measurement because of the distinct variations in both the presence and abundance of these VOCs between individuals. In forensic science, human scent has been used as a form of associative evidence by linking a suspect to a scene/object through the use of human scent discriminating canines. The scent most often collected and used with these specially trained canines is from the hands because a majority of the evidence collected is likely to have been handled by the suspect. However, the scents from other biological specimens, especially those that are likely to be present at scenes of violent crimes, have yet to be explored. Hair, fingernails and saliva are examples of these types of specimens. ^ In this work, a headspace solid phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) technique was used for the identification of VOCs from hand odor, hair, fingernails and saliva. Sixty individuals were sampled and the profiles of the extracted VOCs were evaluated to assess whether they could be used for distinguishing individuals. Preliminary analysis of the biological specimens collected from an individual (intra-subject) showed that, though these materials have some VOCs in common, their overall chemical profile is different for each specimen type. Pair-wise comparisons, using Spearman Rank correlations, were made between the chemical profiles obtained from each subject, per a specimen type. Greater than 98.8% of the collected samples were distinguished from the subjects for all of the specimen types, demonstrating that these specimens can be used for distinguishing individuals. ^ Additionally, field trials were performed to determine the utility of these specimens as scent sources for human scent discriminating canines. Three trials were conducted to evaluate hair, fingernails and saliva in comparison to hand odor, which was considered the standard source of human odor. It was revealed that canines perform similarly to these alternative human scent sources as they do to hand odor implying that, though there are differences in the chemical profiles released by these specimens, they can still be used for the discrimination of individuals by trained canines.^
Resumo:
The manner in which remains decompose has been and is currently being researched around the world, yet little is still known about the generated scent of death. In fact, it was not until the Casey Anthony trial that research on the odor released from decomposing remains, and the compounds that it is comprised of, was brought to light. The Anthony trial marked the first admission of human decomposition odor as forensic evidence into the court of law; however, it was not "ready for prime time" as the scientific research on the scent of death is still in its infancy. This research employed the use of solid-phase microextraction (SPME) with gas chromatography-mass spectrometry (GC-MS) to identify the volatile organic compounds (VOCs) released from decomposing remains and to assess the impact that different environmental conditions had on the scent of death. Using human cadaver analogues, it was discovered that the environment in which the remains were exposed to dramatically affected the odors released by either modifying the compounds that it was comprised of or by enhancing/hindering the amount that was liberated. In addition, the VOCs released during the different stages of the decomposition process for both human remains and analogues were evaluated. Statistical analysis showed correlations between the stage of decay and the VOCs generated, such that each phase of decomposition was distinguishable based upon the type and abundance of compounds that comprised the odor. This study has provided new insight into the scent of death and the factors that can dramatically affect it, specifically, frozen, aquatic, and soil environments. Moreover, the results revealed that different stages of decomposition were distinguishable based upon the type and total mass of each compound present. Thus, based upon these findings, it is suggested that the training aids that are employed for human remains detection (HRD) canines should 1) be characteristic of remains that have undergone decomposition in different environmental settings, and 2) represent each stage of decay, to ensure that the HRD canines have been trained to the various odors that they are likely to encounter in an operational situation.
Resumo:
In certain European countries and the United States of America, canines have been successfully used in human scent identification. There is however, limited scientific knowledge on the composition of human scent and the detection mechanism that produces an alert from canines. This lack of information has resulted in successful legal challenges to human scent evidence in the courts of law. The main objective of this research was to utilize science to validate the current practices of using human scent evidence in criminal cases. The goals of this study were to utilize Headspace Solid Phase Micro Extraction Gas Chromatography Mass Spectrometry (HS-SPME-GC/MS) to determine the optimum collection and storage conditions for human scent samples, to investigate whether the amount of DNA deposited upon contact with an object affects the alerts produced by human scent identification canines, and to create a prototype pseudo human scent which could be used for training purposes. Hand odor samples which were collected on different sorbent materials and exposed to various environmental conditions showed that human scent samples should be stored without prolonged exposure to UVA/UVB light to allow minimal changes to the overall scent profile. Various methods of collecting human scent from objects were also investigated and it was determined that passive collection methods yields ten times more VOCs by mass than active collection methods. Through the use of polymerase chain reaction (PCR) no correlation was found between the amount of DNA that was deposited upon contact with an object and the alerts that were produced by human scent identification canines. Preliminary studies conducted to create a prototype pseudo human scent showed that it is possible to produce fractions of a human scent sample which can be presented to the canines to determine whether specific fractions or the entire sample is needed to produce alerts by the human scent identification canines.
Resumo:
Human scent, or the volatile organic compounds (VOCs) produced by an individual, has been recognized as a biometric measurement because of the distinct variations in both the presence and abundance of these VOCs between individuals. In forensic science, human scent has been used as a form of associative evidence by linking a suspect to a scene/object through the use of human scent discriminating canines. The scent most often collected and used with these specially trained canines is from the hands because a majority of the evidence collected is likely to have been handled by the suspect. However, the scents from other biological specimens, especially those that are likely to be present at scenes of violent crimes, have yet to be explored. Hair, fingernails and saliva are examples of these types of specimens. In this work, a headspace solid phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) technique was used for the identification of VOCs from hand odor, hair, fingernails and saliva. Sixty individuals were sampled and the profiles of the extracted VOCs were evaluated to assess whether they could be used for distinguishing individuals. Preliminary analysis of the biological specimens collected from an individual (intra-subject) showed that, though these materials have some VOCs in common, their overall chemical profile is different for each specimen type. Pair-wise comparisons, using Spearman Rank correlations, were made between the chemical profiles obtained from each subject, per a specimen type. Greater than 98.8% of the collected samples were distinguished from the subjects for all of the specimen types, demonstrating that these specimens can be used for distinguishing individuals. Additionally, field trials were performed to determine the utility of these specimens as scent sources for human scent discriminating canines. Three trials were conducted to evaluate hair, fingernails and saliva in comparison to hand odor, which was considered the standard source of human odor. It was revealed that canines perform similarly to these alternative human scent sources as they do to hand odor implying that, though there are differences in the chemical profiles released by these specimens, they can still be used for the discrimination of individuals by trained canines.
Resumo:
Gunshot residue (GSR) is the term used to describe the particles originating from different parts of the firearm and ammunition during the discharge. A fast and practical field tool to detect the presence of GSR can assist law enforcement in the accurate identification of subjects. A novel field sampling device is presented for the first time for the fast detection and quantitation of volatile organic compounds (VOCs). The capillary microextraction of volatiles (CMV) is a headspace sampling technique that provides fast results (< 2 min. sampling time) and is reported as a versatile and high-efficiency sampling tool. The CMV device can be coupled to a Gas Chromatography-Mass Spectrometry (GC-MS) instrument by installation of a thermal separation probe in the injection port of the GC. An analytical method using the CMV device was developed for the detection of 17 compounds commonly found in polluted environments. The acceptability of the CMV as a field sampling method for the detection of VOCs is demonstrated by following the criteria established by the Environmental Protection Agency (EPA) compendium method TO-17. The CMV device was used, for the first time, for the detection of VOCs on swabs from the hands of shooters, and non-shooters and spent cartridges from different types of ammunition (i.e., pistol, rifle, and shotgun). The proposed method consists in the headspace extraction of VOCs in smokeless powders present in the propellant of ammunition. The sensitivity of this method was demonstrated with method detection limits (MDLs) 4-26 ng for diphenylamine (DPA), nitroglycerine (NG), 2,4-dinitrotoluene (2,4-DNT), and ethyl centralite (EC). In addition, a fast method was developed for the detection of the inorganic components (i.e., Ba, Pb, and Sb) characteristic of GSR presence by Laser Induced Breakdown Spectroscopy (LIBS). Advantages of LIBS include fast analysis (~ 12 seconds per sample) and good sensitivity, with expected MDLs in the range of 0.1-20 ng for target elements. Statistical analysis of the results using both techniques was performed to determine any correlation between the variables analyzed. This work demonstrates that the information collected from the analysis of organic components has the potential to improve the detection of GSR.