12 resultados para VISUAL-SPATIAL ATTENTION
em Digital Commons at Florida International University
Resumo:
This dissertation examines the discursive practice of Argentine costumbrista texts from a novel perspective. In (re)reading the works of selected prominent writers from the late colonial period to the end of the Nineteenth Century, including those of Alonso Carrió de la Vandera, Emeric Essex Vidal, León Pallière, Lucio Vicente López, Lucio V. Mansilla, and Pastor Obligado we focus on the presence of ekphrastic enunciations with a view toward linking the plastic, painterly dimensions of the prose to parallel representations by artists of the same period. Thus the costumbristas are studied in tandem with the watercolors, oil paintings and lithographic compositions of artists such as Carlos Enrique Pellegrim, César Hipólito Bacle, Raymond Monvoisin and Hipólito Moulin. The resulting comparative study of the two arts---the verbal and the pictorial---illustrates the notion described by W. J. T. Mitchell that a literary text may well "represent a work of visual or graphic art." And thus, it provides us with visual, spatial motifs that enhance its powers of representation. ^ In developing our focus on ekphrastic representations we have followed the theoretic studies of Murray Krieger, Jean H. Hagstrum, James Hefferman, John Hollander, W. J. T. Mitchell, Johann Gottfried Herder, and Wendy Steiner among others, all of whom in various ways take their cue from Horace's Ut pictura poesis and the notion that poetry, that is literary discourse, can be likened to a panting and that in both arts there is a refractive quality that makes literature a spoken vehicle of expression and painting a silent, complementary voice. ^ In studying the literary and plastic discourses comparatively what becomes evident is that they share cultural and ideological concerns that center around the notion of self-definition, national identity, and the relation of the individual to the incipient national community (Benedict Anderson). These concerns are highlighted via the depiction of customs, mores, dress, work habits, professions, and social classes. In late colonial literature and painting and especially in the Nineteenth Century, which constitutes the defining period of Argentine political independence, the confluence of the two disciplinary discourses addresses, and underscores the issues of socio-political empowerment in the new Argentine nation. ^
Resumo:
This research pursued the conceptualization, implementation, and verification of a system that enhances digital information displayed on an LCD panel to users with visual refractive errors. The target user groups for this system are individuals who have moderate to severe visual aberrations for which conventional means of compensation, such as glasses or contact lenses, does not improve their vision. This research is based on a priori knowledge of the user's visual aberration, as measured by a wavefront analyzer. With this information it is possible to generate images that, when displayed to this user, will counteract his/her visual aberration. The method described in this dissertation advances the development of techniques for providing such compensation by integrating spatial information in the image as a means to eliminate some of the shortcomings inherent in using display devices such as monitors or LCD panels. Additionally, physiological considerations are discussed and integrated into the method for providing said compensation. In order to provide a realistic sense of the performance of the methods described, they were tested by mathematical simulation in software, as well as by using a single-lens high resolution CCD camera that models an aberrated eye, and finally with human subjects having various forms of visual aberrations. Experiments were conducted on these systems and the data collected from these experiments was evaluated using statistical analysis. The experimental results revealed that the pre-compensation method resulted in a statistically significant improvement in vision for all of the systems. Although significant, the improvement was not as large as expected for the human subject tests. Further analysis suggest that even under the controlled conditions employed for testing with human subjects, the characterization of the eye may be changing. This would require real-time monitoring of relevant variables (e.g. pupil diameter) and continuous adjustment in the pre-compensation process to yield maximum viewing enhancement.
Resumo:
Current reform initiatives recommend that school geometry teaching and learning include the study of three-dimensional geometric objects and provide students with opportunities to use spatial abilities in mathematical tasks. Two ways of using Geometer's Sketchpad (GSP), a dynamic and interactive computer program, in conjunction with manipulatives enable students to investigate and explore geometric concepts, especially when used in a constructivist setting. Research on spatial abilities has focused on visual reasoning to improve visualization skills. This dissertation investigated the hypothesis that connecting visual and analytic reasoning may better improve students' spatial visualization abilities as compared to instruction that makes little or no use of the connection of the two. Data were collected using the Purdue Spatial Visualization Tests (PSVT) administered as a pretest and posttest to a control and two experimental groups. Sixty-four 10th grade students in three geometry classrooms participated in the study during 6 weeks. Research questions were answered using statistical procedures. An analysis of covariance was used for a quantitative analysis, whereas a description of students' visual-analytic processing strategies was presented using qualitative methods. The quantitative results indicated that there were significant differences in gender, but not in the group factor. However, when analyzing a sub sample of 33 participants with pretest scores below the 50th percentile, males in one of the experimental groups significantly benefited from the treatment. A review of previous research also indicated that students with low visualization skills benefited more than those with higher visualization skills. The qualitative results showed that girls were more sophisticated in their visual-analytic processing strategies to solve three-dimensional tasks. It is recommended that the teaching and learning of spatial visualization start in the middle school, prior to students' more rigorous mathematics exposure in high school. A duration longer than 6 weeks for treatments in similar future research studies is also recommended.
Resumo:
This research pursued the conceptualization, implementation, and verification of a system that enhances digital information displayed on an LCD panel to users with visual refractive errors. The target user groups for this system are individuals who have moderate to severe visual aberrations for which conventional means of compensation, such as glasses or contact lenses, does not improve their vision. This research is based on a priori knowledge of the user's visual aberration, as measured by a wavefront analyzer. With this information it is possible to generate images that, when displayed to this user, will counteract his/her visual aberration. The method described in this dissertation advances the development of techniques for providing such compensation by integrating spatial information in the image as a means to eliminate some of the shortcomings inherent in using display devices such as monitors or LCD panels. Additionally, physiological considerations are discussed and integrated into the method for providing said compensation. In order to provide a realistic sense of the performance of the methods described, they were tested by mathematical simulation in software, as well as by using a single-lens high resolution CCD camera that models an aberrated eye, and finally with human subjects having various forms of visual aberrations. Experiments were conducted on these systems and the data collected from these experiments was evaluated using statistical analysis. The experimental results revealed that the pre-compensation method resulted in a statistically significant improvement in vision for all of the systems. Although significant, the improvement was not as large as expected for the human subject tests. Further analysis suggest that even under the controlled conditions employed for testing with human subjects, the characterization of the eye may be changing. This would require real-time monitoring of relevant variables (e.g. pupil diameter) and continuous adjustment in the pre-compensation process to yield maximum viewing enhancement.
Resumo:
Current reform initiatives recommend that geometry instruction include the study of three-dimensional geometric objects and provide students with opportunities to use spatial skills in problem-solving tasks. Geometer's Sketchpad (GSP) is a dynamic and interactive computer program that enables the user to investigate and explore geometric concepts and manipulate geometric structures. Research using GSP as an instructional tool has focused primarily on teaching and learning two-dimensional geometry. This study explored the effect of a GSP based instructional environment on students' geometric thinking and three-dimensional spatial ability as they used GSP to learn three-dimensional geometry. For 10 weeks, 18 tenth-grade students from an urban school district used GSP to construct and analyze dynamic, two-dimensional representations of three-dimensional objects in a classroom environment that encouraged exploration, discussion, conjecture, and verification. The data were collected primarily from participant observations and clinical interviews and analyzed using qualitative methods of analysis. In addition, pretest and posttest measures of three-dimensional spatial ability and van Hiele level of geometric thinking were obtained. Spatial ability measures were analyzed using standard t-test analysis. ^ The data from this study indicate that GSP is a viable tool to teach students about three-dimensional geometric objects. A comparison of students' pretest and posttest van Hiele levels showed an improvement in geometric thinking, especially for students on lower levels of the van Hiele theory. Evidence at the p < .05 level indicated that students' spatial ability improved significantly. Specifically, the GSP dynamic, visual environment supported students' visualization and reasoning processes as students attempted to solve challenging tasks about three-dimensional geometric objects. The GSP instructional activities also provided students with an experiential base and an intuitive understanding about three-dimensional objects from which more formal work in geometry could be pursued. This study demonstrates that by designing appropriate GSP based instructional environments, it is possible to help students improve their spatial skills, develop more coherent and accurate intuitions about three-dimensional geometric objects, and progress through the levels of geometric thinking proposed by van Hiele. ^
Resumo:
It has been well documented that traffic accidents that can be avoided occur when the motorists miss or ignore traffic signs. With the attention of drivers getting diverted due to distractions like cell phone conversations, missing traffic signs has become more prevalent. Also, poor weather and other unfriendly driving conditions sometimes makes the motorists not to be alert all the time and see every traffic sign on the road. Besides, most cars do not have any form of traffic assistance. Because of heavy traffic and proliferation of traffic signs on the roads, there is a need for a system that assists the driver not to miss a traffic sign to reduce the probability of an accident. Since visual information is critical for driving, processed video signals from cameras have been chosen to assist drivers. These inexpensive cameras can be easily mounted on the automobile. The objective of the present investigation and the traffic system development is to recognize the traffic signs electronically and alert drivers. For the case study and the system development, five important and critical traffic signs have been selected. They are: STOP, NO ENTER, NO RIGHT TURN, NO LEFT TURN, and YIELD. The system was evaluated processing still pictures taken from the public roads, and the recognition results were presented in an analysis table to indicate the correct identifications and the false ones. The system reached the acceptable recognition rate of 80% for all five traffic signs. The processing rate was about three seconds. The capabilities of MATLAB, VLSI design platforms and coding have been used to generate a visual warning to complement the visual driver support system with a Field Programmable Gate Array (FPGA) on a XUP Virtex-II Pro Development System.
Resumo:
One of the overarching questions in the field of infant perceptual and cognitive development concerns how selective attention is organized during early development to facilitate learning. The following study examined how infants' selective attention to properties of social events (i.e., prosody of speech and facial identity) changes in real time as a function of intersensory redundancy (redundant audiovisual, nonredundant unimodal visual) and exploratory time. Intersensory redundancy refers to the spatially coordinated and temporally synchronous occurrence of information across multiple senses. Real time macro- and micro-structural change in infants' scanning patterns of dynamic faces was also examined. ^ According to the Intersensory Redundancy Hypothesis, information presented redundantly and in temporal synchrony across two or more senses recruits infants' selective attention and facilitates perceptual learning of highly salient amodal properties (properties that can be perceived across several sensory modalities such as the prosody of speech) at the expense of less salient modality specific properties. Conversely, information presented to only one sense facilitates infants' learning of modality specific properties (properties that are specific to a particular sensory modality such as facial features) at the expense of amodal properties (Bahrick & Lickliter, 2000, 2002). ^ Infants' selective attention and discrimination of prosody of speech and facial configuration was assessed in a modified visual paired comparison paradigm. In redundant audiovisual stimulation, it was predicted infants would show discrimination of prosody of speech in the early phases of exploration and facial configuration in the later phases of exploration. Conversely, in nonredundant unimodal visual stimulation, it was predicted infants would show discrimination of facial identity in the early phases of exploration and prosody of speech in the later phases of exploration. Results provided support for the first prediction and indicated that following redundant audiovisual exposure, infants showed discrimination of prosody of speech earlier in processing time than discrimination of facial identity. Data from the nonredundant unimodal visual condition provided partial support for the second prediction and indicated that infants showed discrimination of facial identity, but not prosody of speech. The dissertation study contributes to the understanding of the nature of infants' selective attention and processing of social events across exploratory time.^
Resumo:
Near infrared spectroscopy (NIRS) is an emerging non-invasive optical neuro imaging technique that monitors the hemodynamic response to brain activation with ms-scale temporal resolution and sub-cm spatial resolution. The overall goal of my dissertation was to develop and apply NIRS towards investigation of neurological response to language, joint attention and planning and execution of motor skills in healthy adults. Language studies were performed to investigate the hemodynamic response, synchrony and dominance feature of the frontal and fronto-temporal cortex of healthy adults in response to language reception and expression. The mathematical model developed based on granger causality explicated the directional flow of information during the processing of language stimuli by the fronto-temporal cortex. Joint attention and planning/ execution of motor skill studies were performed to investigate the hemodynamic response, synchrony and dominance feature of the frontal cortex of healthy adults and in children (5-8 years old) with autism (for joint attention studies) and individuals with cerebral palsy (for planning/execution of motor skills studies). The joint attention studies on healthy adults showed differences in activation as well as intensity and phase dependent connectivity in the frontal cortex during joint attention in comparison to rest. The joint attention studies on typically developing children showed differences in frontal cortical activation in comparison to that in children with autism. The planning and execution of motor skills studies on healthy adults and individuals with cerebral palsy (CP) showed difference in the frontal cortical dominance, that is, bilateral and ipsilateral dominance, respectively. The planning and execution of motor skills studies also demonstrated the plastic and learning behavior of brain wherein correlation was found between the relative change in total hemoglobin in the frontal cortex and the kinematics of the activity performed by the participants. Thus, during my dissertation the NIRS neuroimaging technique was successfully implemented to investigate the neurological response of language, joint attention and planning and execution of motor skills in healthy adults as well as preliminarily on children with autism and individuals with cerebral palsy. These NIRS studies have long-term potential for the design of early stage interventions in children with autism and customized rehabilitation in individuals with cerebral palsy.
Resumo:
More information is now readily available to computer users than at any time in human history; however, much of this information is often inaccessible to people with blindness or low-vision, for whom information must be presented non-visually. Currently, screen readers are able to verbalize on-screen text using text-to-speech (TTS) synthesis; however, much of this vocalization is inadequate for browsing the Internet. An auditory interface that incorporates auditory-spatial orientation was created and tested. For information that can be structured as a two-dimensional table, links can be semantically grouped as cells in a row within an auditory table, which provides a consistent structure for auditory navigation. An auditory display prototype was tested.^ Sixteen legally blind subjects participated in this research study. Results demonstrated that stereo panning was an effective technique for audio-spatially orienting non-visual navigation in a five-row, six-column HTML table as compared to a centered, stationary synthesized voice. These results were based on measuring the time- to-target (TTT), or the amount of time elapsed from the first prompting to the selection of each tabular link. Preliminary analysis of the TTT values recorded during the experiment showed that the populations did not conform to the ANOVA requirements of normality and equality of variances. Therefore, the data were transformed using the natural logarithm. The repeated-measures two-factor ANOVA results show that the logarithmically-transformed TTTs were significantly affected by the tonal variation method, F(1,15) = 6.194, p= 0.025. Similarly, the results show that the logarithmically transformed TTTs were marginally affected by the stereo spatialization method, F(1,15) = 4.240, p=0.057. The results show that the logarithmically transformed TTTs were not significantly affected by the interaction of both methods, F(1,15) = 1.381, p=0.258. These results suggest that some confusion may be caused in the subject when employing both of these methods simultaneously. The significant effect of tonal variation indicates that the effect is actually increasing the average TTT. In other words, the presence of preceding tones increases task completion time on average. The marginally-significant effect of stereo spatialization decreases the average log(TTT) from 2.405 to 2.264.^
Resumo:
This study aims to understand individual differences in preschooler’s early comprehension of spatial language. Spatial language is defined as terms describing location, direction, shape, dimension, features, orientation, and quantity (e.g location, shape). Spatial language is considered to be one of the important factors in the development of spatial reasoning in the preschool years (Pruden, Levine, & Huttenlocher, 2011). In recent years, research has shown spatial reasoning is an important predictor of successes in STEM (Science, Technology, Engineering, and Mathematics) fields (e.g. Shea, Lubinski & Benbow, 2001; Wai, Lubinksi &Benbow, 2009). The current study focuses on when children begin to comprehend spatial terms, while previous work has mainly focused on production of spatial language. Identifying when children begin to comprehend spatial terms could lead to a better understanding of how spatial reasoning develops. We use the Intermodal Preferential Looking paradigm (IPLP) to examine three-year-old children’s ability to map spatial terms to visual representations. Fourteen spatial terms were used to test these abilities (e.g. bottom, diamond, longer). For each test trial children were presented with two different stimuli simultaneously on the left and right sides of a television screen. A female voice prompted the child to find the target spatial relation (e.g. “can you find the boy pointing to the bottom of the window”; Figure 1). A Tobii X60 eye-tracker was used to record the child’s eye gaze for each trial. For each child the proportion of looking to the target image divided by their total looking during the trial was calculated; this served as the dependent variable. Proportions above .50 indicated that the child had correctly mapped the spatial term to the target image. Preliminary data shows that the number of words comprehended in the IPLP task is correlated to parental report of the child’s comprehension of spatial terms (r[14]=.500, p<.05).
Resumo:
This study aims to understand individual differences in preschooler’s early comprehension of spatial language. Spatial language is defined as terms describing location, direction, shape, dimension, features, orientation, and quantity (e.g location, shape). Spatial language is considered to be one of the important factors in the development of spatial reasoning in the preschool years (Pruden, Levine, & Huttenlocher, 2011). In recent years, research has shown spatial reasoning is an important predictor of successes in STEM (Science, Technology, Engineering, and Mathematics) fields (e.g. Shea, Lubinski & Benbow, 2001; Wai, Lubinksi &Benbow, 2009). The current study focuses on when children begin to comprehend spatial terms, while previous work has mainly focused on production of spatial language. Identifying when children begin to comprehend spatial terms could lead to a better understanding of how spatial reasoning develops. We use the Intermodal Preferential Looking paradigm (IPLP) to examine three-year-old children’s ability to map spatial terms to visual representations. Fourteen spatial terms were used to test these abilities (e.g. bottom, diamond, longer). For each test trial children were presented with two different stimuli simultaneously on the left and right sides of a television screen. A female voice prompted the child to find the target spatial relation (e.g. “can you find the boy pointing to the bottom of the window”; Figure 1). A Tobii X60 eye-tracker was used to record the child’s eye gaze for each trial. For each child the proportion of looking to the target image divided by their total looking during the trial was calculated; this served as the dependent variable. Proportions above .50 indicated that the child had correctly mapped the spatial term to the target image. Preliminary data shows that the number of words comprehended in the IPLP task is correlated to parental report of the child’s comprehension of spatial terms (r[14]=.500, p<.05).
Resumo:
Near infrared spectroscopy (NIRS) is an emerging non-invasive optical neuro imaging technique that monitors the hemodynamic response to brain activation with ms-scale temporal resolution and sub-cm spatial resolution. The overall goal of my dissertation was to develop and apply NIRS towards investigation of neurological response to language, joint attention and planning and execution of motor skills in healthy adults. Language studies were performed to investigate the hemodynamic response, synchrony and dominance feature of the frontal and fronto-temporal cortex of healthy adults in response to language reception and expression. The mathematical model developed based on granger causality explicated the directional flow of information during the processing of language stimuli by the fronto-temporal cortex. Joint attention and planning/ execution of motor skill studies were performed to investigate the hemodynamic response, synchrony and dominance feature of the frontal cortex of healthy adults and in children (5-8 years old) with autism (for joint attention studies) and individuals with cerebral palsy (for planning/execution of motor skills studies). The joint attention studies on healthy adults showed differences in activation as well as intensity and phase dependent connectivity in the frontal cortex during joint attention in comparison to rest. The joint attention studies on typically developing children showed differences in frontal cortical activation in comparison to that in children with autism. The planning and execution of motor skills studies on healthy adults and individuals with cerebral palsy (CP) showed difference in the frontal cortical dominance, that is, bilateral and ipsilateral dominance, respectively. The planning and execution of motor skills studies also demonstrated the plastic and learning behavior of brain wherein correlation was found between the relative change in total hemoglobin in the frontal cortex and the kinematics of the activity performed by the participants. Thus, during my dissertation the NIRS neuroimaging technique was successfully implemented to investigate the neurological response of language, joint attention and planning and execution of motor skills in healthy adults as well as preliminarily on children with autism and individuals with cerebral palsy. These NIRS studies have long-term potential for the design of early stage interventions in children with autism and customized rehabilitation in individuals with cerebral palsy.