3 resultados para VERTICAL-DISTRIBUTION

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Total soil-mercury and phosphorus concentrations were determined in 64 sites in the southern half of Water Conservation Area 3A, an area of approximately 500 km2 . Surface soil-Hg concentrations ranged from 117 to 300 ng-g-1;total phosphorus concentrations range from 350 to 850 pg~g-1. No consistent north-south or east-west trends are found in the mercury or phosphorus surface concentrations when they are normalized to soil bulk density. Nine sites were used for the determination of the vertical distribution of soilmercury. Vertical profiles of soil-Hg revealed decreasing concentrations with depth and correlated well with phosphorus in soil profiles. Mercury concentrations in soil profiles may be interpreted as an increase in the rate of deposition of mercury in the region in recent decades and/or as postdepositionalmobilization of mercury to surface layers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Eddy covariance (EC) estimates of carbon dioxide (CO2) fluxes and energy balance are examined to investigate the functional responses of a mature mangrove forest to a disturbance generated by Hurricane Wilma on October 24, 2005 in the Florida Everglades. At the EC site, high winds from the hurricane caused nearly 100% defoliation in the upper canopy and widespread tree mortality. Soil temperatures down to -50 cm increased, and air temperature lapse rates within the forest canopy switched from statically stable to statically unstable conditions following the disturbance. Unstable conditions allowed more efficient transport of water vapor and CO2 from the surface up to the upper canopy layer. Significant increases in latent heat fluxes (LE) and nighttime net ecosystem exchange (NEE) were also observed and sensible heat fluxes (H) as a proportion of net radiation decreased significantly in response to the disturbance. Many of these impacts persisted through much of the study period through 2009. However, local albedo and MODIS (Moderate Resolution Imaging Spectro-radiometer) data (the Enhanced Vegetation Index) indicated a substantial proportion of active leaf area recovered before the EC measurements began 1 year after the storm. Observed changes in the vertical distribution and the degree of clumping in newly emerged leaves may have affected the energy balance. Direct comparisons of daytime NEE values from before the storm and after our measurements resumed did not show substantial or consistent differences that could be attributed to the disturbance. Regression analyses on seasonal time scales were required to differentiate the storm's impact on monthly average daytime NEE from the changes caused by interannual variability in other environmental drivers. The effects of the storm were apparent on annual time scales, and CO2 uptake remained approximately 250 g C m-2 yr-1 lower in 2009 compared to the average annual values measured in 2004-2005. Dry season CO2 uptake was relatively more affected by the disturbance than wet season values. Complex leaf regeneration dynamics on damaged trees during ecosystem recovery are hypothesized to lead to the variable dry versus wet season impacts on daytime NEE. In contrast, nighttime CO2 release (i.e., nighttime respiration) was consistently and significantly greater, possibly as a result of the enhanced decomposition of litter and coarse woody debris generated by the storm, and this effect was most apparent in the wet seasons compared to the dry seasons. The largest pre- and post-storm differences in NEE coincided roughly with the delayed peak in cumulative mortality of stems in 2007-2008. Across the hurricane-impacted region, cumulative tree mortality rates were also closely correlated with declines in peat surface elevation. Mangrove forest-atmosphere interactions are interpreted with respect to the damage and recovery of stand dynamics and soil accretion processes following the hurricane.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Non-native predators may have negative impacts on native communities, and these effects may be dependent on interactions among multiple non-native predators. Sequential invasions by predators can enhance risk for native prey. Prey have a limited ability to respond to multiple threats since appropriate responses may conflict, and interactions with recent invaders may be novel. We examined predator–prey interactions among two non-native predators, a recent invader, the African jewelfish, and the longer-established Mayan cichlid, and a native Florida Everglades prey assemblage. Using field enclosures and laboratory aquaria, we compared predatory effects and antipredator responses across five prey taxa. Total predation rates were higher for Mayan cichlids, which also targeted more prey types. The cichlid invaders had similar microhabitat use, but varied in foraging styles, with African jewelfish being more active. The three prey species that experienced predation were those that overlapped in habitat use with predators. Flagfish were consumed by both predators, while riverine grass shrimp and bluefin killifish were eaten only by Mayan cichlids. In mixed predator treatments, we saw no evidence of emergent effects, since interactions between the two cichlid predators were low. Prey responded to predator threats by altering activity but not vertical distribution. Results suggest that prey vulnerability is affected by activity and habitat domain overlap with predators and may be lower to newly invading predators, perhaps due to novelty in the interaction.