13 resultados para User-centered design
em Digital Commons at Florida International University
Resumo:
The design of interfaces to facilitate user search has become critical for search engines, ecommercesites, and intranets. This study investigated the use of targeted instructional hints to improve search by measuring the quantitative effects of users' performance and satisfaction. The effects of syntactic, semantic and exemplar search hints on user behavior were evaluated in an empirical investigation using naturalistic scenarios. Combining the three search hint components, each with two levels of intensity, in a factorial design generated eight search engine interfaces. Eighty participants participated in the study and each completed six realistic search tasks. Results revealed that the inclusion of search hints improved user effectiveness, efficiency and confidence when using the search interfaces, but with complex interactions that require specific guidelines for search interface designers. These design guidelines will allow search designers to create more effective interfaces for a variety of searchapplications.
Resumo:
Computing devices have become ubiquitous in our technologically-advanced world, serving as vehicles for software applications that provide users with a wide array of functions. Among these applications are electronic learning software, which are increasingly being used to educate and evaluate individuals ranging from grade school students to career professionals. This study will evaluate the design and implementation of user interfaces in these pieces of software. Specifically, it will explore how these interfaces can be developed to facilitate the use of electronic learning software by children. In order to do this, research will be performed in the area of human-computer interaction, focusing on cognitive psychology, user interface design, and software development. This information will be analyzed in order to design a user interface that provides an optimal user experience for children. This group will test said interface, as well as existing applications, in order to measure its usability. The objective of this study is to design a user interface that makes electronic learning software more usable for children, facilitating their learning process and increasing their academic performance. This study will be conducted by using the Adobe Creative Suite to design the user interface and an Integrated Development Environment to implement functionality. These are digital tools that are available on computing devices such as desktop computers, laptops, and smartphones, which will be used for the development of software. By using these tools, I hope to create a user interface for electronic learning software that promotes usability while maintaining functionality. This study will address the increasing complexity of computing software seen today – an issue that has risen due to the progressive implementation of new functionality. This issue is having a detrimental effect on the usability of electronic learning software, increasing the learning curve for targeted users such as children. As we make electronic learning software an integral part of educational programs in our schools, it is important to address this in order to guarantee them a successful learning experience.
Resumo:
Computing devices have become ubiquitous in our technologically-advanced world, serving as vehicles for software applications that provide users with a wide array of functions. Among these applications are electronic learning software, which are increasingly being used to educate and evaluate individuals ranging from grade school students to career professionals. This study will evaluate the design and implementation of user interfaces in these pieces of software. Specifically, it will explore how these interfaces can be developed to facilitate the use of electronic learning software by children. In order to do this, research will be performed in the area of human-computer interaction, focusing on cognitive psychology, user interface design, and software development. This information will be analyzed in order to design a user interface that provides an optimal user experience for children. This group will test said interface, as well as existing applications, in order to measure its usability. The objective of this study is to design a user interface that makes electronic learning software more usable for children, facilitating their learning process and increasing their academic performance. This study will be conducted by using the Adobe Creative Suite to design the user interface and an Integrated Development Environment to implement functionality. These are digital tools that are available on computing devices such as desktop computers, laptops, and smartphones, which will be used for the development of software. By using these tools, I hope to create a user interface for electronic learning software that promotes usability while maintaining functionality. This study will address the increasing complexity of computing software seen today – an issue that has risen due to the progressive implementation of new functionality. This issue is having a detrimental effect on the usability of electronic learning software, increasing the learning curve for targeted users such as children. As we make electronic learning software an integral part of educational programs in our schools, it is important to address this in order to guarantee them a successful learning experience.
Resumo:
Today, the development of domain-specific communication applications is both time-consuming and error-prone because the low-level communication services provided by the existing systems and networks are primitive and often heterogeneous. Multimedia communication applications are typically built on top of low-level network abstractions such as TCP/UDP socket, SIP (Session Initiation Protocol) and RTP (Real-time Transport Protocol) APIs. The User-centric Communication Middleware (UCM) is proposed to encapsulate the networking complexity and heterogeneity of basic multimedia and multi-party communication for upper-layer communication applications. And UCM provides a unified user-centric communication service to diverse communication applications ranging from a simple phone call and video conferencing to specialized communication applications like disaster management and telemedicine. It makes it easier to the development of domain-specific communication applications. The UCM abstraction and API is proposed to achieve these goals. The dissertation also tries to integrate the formal method into UCM development process. The formal model is created for UCM using SAM methodology. Some design errors are found during model creation because the formal method forces to give the precise description of UCM. By using the SAM tool, formal UCM model is translated to Promela formula model. In the dissertation, some system properties are defined as temporal logic formulas. These temporal logic formulas are manually translated to promela formulas which are individually integrated with promela formula model of UCM and verified using SPIN tool. Formal analysis used here helps verify the system properties (for example multiparty multimedia protocol) and dig out the bugs of systems.
Resumo:
With the rapid growth of the Internet, computer attacks are increasing at a fast pace and can easily cause millions of dollar in damage to an organization. Detecting these attacks is an important issue of computer security. There are many types of attacks and they fall into four main categories, Denial of Service (DoS) attacks, Probe, User to Root (U2R) attacks, and Remote to Local (R2L) attacks. Within these categories, DoS and Probe attacks continuously show up with greater frequency in a short period of time when they attack systems. They are different from the normal traffic data and can be easily separated from normal activities. On the contrary, U2R and R2L attacks are embedded in the data portions of the packets and normally involve only a single connection. It becomes difficult to achieve satisfactory detection accuracy for detecting these two attacks. Therefore, we focus on studying the ambiguity problem between normal activities and U2R/R2L attacks. The goal is to build a detection system that can accurately and quickly detect these two attacks. In this dissertation, we design a two-phase intrusion detection approach. In the first phase, a correlation-based feature selection algorithm is proposed to advance the speed of detection. Features with poor prediction ability for the signatures of attacks and features inter-correlated with one or more other features are considered redundant. Such features are removed and only indispensable information about the original feature space remains. In the second phase, we develop an ensemble intrusion detection system to achieve accurate detection performance. The proposed method includes multiple feature selecting intrusion detectors and a data mining intrusion detector. The former ones consist of a set of detectors, and each of them uses a fuzzy clustering technique and belief theory to solve the ambiguity problem. The latter one applies data mining technique to automatically extract computer users’ normal behavior from training network traffic data. The final decision is a combination of the outputs of feature selecting and data mining detectors. The experimental results indicate that our ensemble approach not only significantly reduces the detection time but also effectively detect U2R and R2L attacks that contain degrees of ambiguous information.
Resumo:
This dissertation introduces a novel automated book reader as an assistive technology tool for persons with blindness. The literature shows extensive work in the area of optical character recognition, but the current methodologies available for the automated reading of books or bound volumes remain inadequate and are severely constrained during document scanning or image acquisition processes. The goal of the book reader design is to automate and simplify the task of reading a book while providing a user-friendly environment with a realistic but affordable system design. This design responds to the main concerns of (a) providing a method of image acquisition that maintains the integrity of the source (b) overcoming optical character recognition errors created by inherent imaging issues such as curvature effects and barrel distortion, and (c) determining a suitable method for accurate recognition of characters that yields an interface with the ability to read from any open book with a high reading accuracy nearing 98%. This research endeavor focuses in its initial aim on the development of an assistive technology tool to help persons with blindness in the reading of books and other bound volumes. But its secondary and broader aim is to also find in this design the perfect platform for the digitization process of bound documentation in line with the mission of the Open Content Alliance (OCA), a nonprofit Alliance at making reading materials available in digital form. The theoretical perspective of this research relates to the mathematical developments that are made in order to resolve both the inherent distortions due to the properties of the camera lens and the anticipated distortions of the changing page curvature as one leafs through the book. This is evidenced by the significant increase of the recognition rate of characters and a high accuracy read-out through text to speech processing. This reasonably priced interface with its high performance results and its compatibility to any computer or laptop through universal serial bus connectors extends greatly the prospects for universal accessibility to documentation.
Resumo:
The population of English Language Learners (ELLs) globally has been increasing substantially every year. In the United States alone, adult ELLs are the fastest growing portion of learners in adult education programs (Yang, 2005). There is a significant need to improve the teaching of English to ELLs in the United States and other English-speaking dominant countries. However, for many ELLs, speaking, especially to Native English Speakers (NESs), causes considerable language anxiety, which in turn plays a vital role in hindering their language development and academic progress (Pichette, 2009; Woodrow, 2006). ^ Task-based Language Teaching (TBLT), such as simulation activities, has long been viewed as an effective approach for second-language development. The current advances in technology and rapid emergence of Multi-User Virtual Environments (MUVEs) have provided an opportunity for educators to consider conducting simulations online for ELLs to practice speaking English to NESs. Yet to date, empirical research on the effects of MUVEs on ELLs' language development and speaking is limited (Garcia-Ruiz, Edwards, & Aquino-Santos, 2007). ^ This study used a true experimental treatment control group repeated measures design to compare the perceived speaking anxiety levels (as measured by an anxiety scale administered per simulation activity) of 11 ELLs (5 in the control group, 6 in the experimental group) when speaking to Native English Speakers (NESs) during 10 simulation activities. Simulations in the control group were done face-to-face, while those in the experimental group were done in the MUVE of Second Life. ^ The results of the repeated measures ANOVA revealed after the Huynh-Feldt epsilon correction, demonstrated for both groups a significant decrease in anxiety levels over time from the first simulation to the tenth and final simulation. When comparing the two groups, the results revealed a statistically significant difference, with the experimental group demonstrating a greater anxiety reduction. These results suggests that language instructors should consider including face-to-face and MUVE simulations with ELLs paired with NESs as part of their language instruction. Future investigations should investigate the use of other multi-user virtual environments and/or measure other dimensions of the ELL/NES interactions.^
Resumo:
A pre-test, post-test, quasi-experimental design was used to examine the effects of student-centered and traditional models of reading instruction on outcomes of literal comprehension and critical thinking skills. The sample for this study consisted of 101 adult students enrolled in a high-level developmental reading course at a large, urban community college in the Southeastern United States. The experimental group consisted of 48 students, and the control group consisted of 53 students. Students in the experimental group were limited in the time spent reading a course text of basic skills, with instructors using supplemental materials such as poems, news articles, and novels. Discussions, the reading-writing connection, and student choice in material selection were also part of the student-centered curriculum. Students in the control group relied heavily on a course text and vocabulary text for reading material, with great focus placed on basic skills. Activities consisted primarily of multiple-choice questioning and quizzes. The instrument used to collect pre-test data was Descriptive Tests of Language Skills in Reading Comprehension; post-test data were taken from the Florida College Basic Skills Exit Test. A MANCOVA was used as the statistical method to determine if either model of instruction led to significantly higher gains in literal comprehension skills or critical thinking skills. A paired samples t-test was also used to compare pre-test and post-test means. The results of the MANCOVA indicated no significant difference between instructional models on scores of literal comprehension and critical thinking. Neither was there any significant difference in scores between subgroups of age (under 25 and 25 and older) and language background (native English speaker and second-language learner). The results of the t-test indicated, however, that students taught under both instructional models made significant gains in on both literal comprehension and critical thinking skills from pre-test to post-test.
Resumo:
With the rapid growth of the Internet, computer attacks are increasing at a fast pace and can easily cause millions of dollar in damage to an organization. Detecting these attacks is an important issue of computer security. There are many types of attacks and they fall into four main categories, Denial of Service (DoS) attacks, Probe, User to Root (U2R) attacks, and Remote to Local (R2L) attacks. Within these categories, DoS and Probe attacks continuously show up with greater frequency in a short period of time when they attack systems. They are different from the normal traffic data and can be easily separated from normal activities. On the contrary, U2R and R2L attacks are embedded in the data portions of the packets and normally involve only a single connection. It becomes difficult to achieve satisfactory detection accuracy for detecting these two attacks. Therefore, we focus on studying the ambiguity problem between normal activities and U2R/R2L attacks. The goal is to build a detection system that can accurately and quickly detect these two attacks. In this dissertation, we design a two-phase intrusion detection approach. In the first phase, a correlation-based feature selection algorithm is proposed to advance the speed of detection. Features with poor prediction ability for the signatures of attacks and features inter-correlated with one or more other features are considered redundant. Such features are removed and only indispensable information about the original feature space remains. In the second phase, we develop an ensemble intrusion detection system to achieve accurate detection performance. The proposed method includes multiple feature selecting intrusion detectors and a data mining intrusion detector. The former ones consist of a set of detectors, and each of them uses a fuzzy clustering technique and belief theory to solve the ambiguity problem. The latter one applies data mining technique to automatically extract computer users’ normal behavior from training network traffic data. The final decision is a combination of the outputs of feature selecting and data mining detectors. The experimental results indicate that our ensemble approach not only significantly reduces the detection time but also effectively detect U2R and R2L attacks that contain degrees of ambiguous information.
Resumo:
A man-machine system called teleoperator system has been developed to work in hazardous environments such as nuclear reactor plants. Force reflection is a type of force feedback in which forces experienced by the remote manipulator are fed back to the manual controller. In a force-reflecting teleoperation system, the operator uses the manual controller to direct the remote manipulator and receives visual information from a video image and/or graphical animation on the computer screen. This thesis presents the design of a portable Force-Reflecting Manual Controller (FRMC) for the teleoperation of tasks such as hazardous material handling, waste cleanup, and space-related operations. The work consists of the design and construction of a prototype 1-Degree-of-Freedom (DOF) FRMC, the development of the Graphical User Interface (GUI), and system integration. Two control strategies - PID and fuzzy logic controllers are developed and experimentally tested. The system response of each is analyzed and evaluated. In addition, the concept of a telesensation system is introduced, and a variety of design alternatives of a 3-DOF FRMC are proposed for future development.
Resumo:
The effective control of production activities in dynamic job shop with predetermined resource allocation for all the jobs entering the system is a unique manufacturing environment, which exists in the manufacturing industry. In this thesis a framework for an Internet based real time shop floor control system for such a dynamic job shop environment is introduced. The system aims to maintain the schedule feasibility of all the jobs entering the manufacturing system under any circumstance. The system is capable of deciding how often the manufacturing activities should be monitored to check for control decisions that need to be taken on the shop floor. The system will provide the decision maker real time notification to enable him to generate feasible alternate solutions in case a disturbance occurs on the shop floor. The control system is also capable of providing the customer with real time access to the status of the jobs on the shop floor. The communication between the controller, the user and the customer is through web based user friendly GUI. The proposed control system architecture and the interface for the communication system have been designed, developed and implemented.
Resumo:
The purpose of this research is to examine the use of a mock-up review process in interior design projects to better understand the implications of using such a process within the standard professional practice model. The research consisted of interviewing design professionals who utilize mock-ups as part of their standard of practice. These interviews were centered around two groups - those working in shipbuilding, where mock-ups have a long history, and those working in land-based projects, where mock-up use is rare. Analysis of the interviews indicated a positive relationship between mock-up use and collaboration, innovation, and problem solving. The interviews also brought to light concerns on behalf of all the professionals surveyed about the current practice model in land-based building design and construction projects within the United States. The positive relationships shown in the thesis support further research to explore how mock-ups can be best utilized in interior design.
Resumo:
The population of English Language Learners (ELLs) globally has been increasing substantially every year. In the United States alone, adult ELLs are the fastest growing portion of learners in adult education programs (Yang, 2005). There is a significant need to improve the teaching of English to ELLs in the United States and other English-speaking dominant countries. However, for many ELLs, speaking, especially to Native English Speakers (NESs), causes considerable language anxiety, which in turn plays a vital role in hindering their language development and academic progress (Pichette, 2009; Woodrow, 2006). Task-based Language Teaching (TBLT), such as simulation activities, has long been viewed as an effective approach for second-language development. The current advances in technology and rapid emergence of Multi-User Virtual Environments (MUVEs) have provided an opportunity for educators to consider conducting simulations online for ELLs to practice speaking English to NESs. Yet to date, empirical research on the effects of MUVEs on ELLs’ language development and speaking is limited (Garcia-Ruiz, Edwards, & Aquino-Santos, 2007). This study used a true experimental treatment control group repeated measures design to compare the perceived speaking anxiety levels (as measured by an anxiety scale administered per simulation activity) of 11 ELLs (5 in the control group, 6 in the experimental group) when speaking to Native English Speakers (NESs) during 10 simulation activities. Simulations in the control group were done face-to-face, while those in the experimental group were done in the MUVE of Second Life. The results of the repeated measures ANOVA revealed after the Huynh-Feldt epsilon correction, demonstrated for both groups a significant decrease in anxiety levels over time from the first simulation to the tenth and final simulation. When comparing the two groups, the results revealed a statistically significant difference, with the experimental group demonstrating a greater anxiety reduction. These results suggests that language instructors should consider including face-to-face and MUVE simulations with ELLs paired with NESs as part of their language instruction. Future investigations should investigate the use of other multi-user virtual environments and/or measure other dimensions of the ELL/NES interactions.