17 resultados para User interest model
em Digital Commons at Florida International University
Resumo:
Software engineering researchers are challenged to provide increasingly more powerful levels of abstractions to address the rising complexity inherent in software solutions. One new development paradigm that places models as abstraction at the forefront of the development process is Model-Driven Software Development (MDSD). MDSD considers models as first class artifacts, extending the capability for engineers to use concepts from the problem domain of discourse to specify apropos solutions. A key component in MDSD is domain-specific modeling languages (DSMLs) which are languages with focused expressiveness, targeting a specific taxonomy of problems. The de facto approach used is to first transform DSML models to an intermediate artifact in a HLL e.g., Java or C++, then execute that resulting code.^ Our research group has developed a class of DSMLs, referred to as interpreted DSMLs (i-DSMLs), where models are directly interpreted by a specialized execution engine with semantics based on model changes at runtime. This execution engine uses a layered architecture and is referred to as a domain-specific virtual machine (DSVM). As the domain-specific model being executed descends the layers of the DSVM the semantic gap between the user-defined model and the services being provided by the underlying infrastructure is closed. The focus of this research is the synthesis engine, the layer in the DSVM which transforms i-DSML models into executable scripts for the next lower layer to process.^ The appeal of an i-DSML is constrained as it possesses unique semantics contained within the DSVM. Existing DSVMs for i-DSMLs exhibit tight coupling between the implicit model of execution and the semantics of the domain, making it difficult to develop DSVMs for new i-DSMLs without a significant investment in resources.^ At the onset of this research only one i-DSML had been created for the user- centric communication domain using the aforementioned approach. This i-DSML is the Communication Modeling Language (CML) and its DSVM is the Communication Virtual machine (CVM). A major problem with the CVM's synthesis engine is that the domain-specific knowledge (DSK) and the model of execution (MoE) are tightly interwoven consequently subsequent DSVMs would need to be developed from inception with no reuse of expertise.^ This dissertation investigates how to decouple the DSK from the MoE and subsequently producing a generic model of execution (GMoE) from the remaining application logic. This GMoE can be reused to instantiate synthesis engines for DSVMs in other domains. The generalized approach to developing the model synthesis component of i-DSML interpreters utilizes a reusable framework loosely coupled to DSK as swappable framework extensions.^ This approach involves first creating an i-DSML and its DSVM for a second do- main, demand-side smartgrid, or microgrid energy management, and designing the synthesis engine so that the DSK and MoE are easily decoupled. To validate the utility of the approach, the SEs are instantiated using the GMoE and DSKs of the two aforementioned domains and an empirical study to support our claim of reduced developmental effort is performed.^
Resumo:
Software engineering researchers are challenged to provide increasingly more pow- erful levels of abstractions to address the rising complexity inherent in software solu- tions. One new development paradigm that places models as abstraction at the fore- front of the development process is Model-Driven Software Development (MDSD). MDSD considers models as first class artifacts, extending the capability for engineers to use concepts from the problem domain of discourse to specify apropos solutions. A key component in MDSD is domain-specific modeling languages (DSMLs) which are languages with focused expressiveness, targeting a specific taxonomy of problems. The de facto approach used is to first transform DSML models to an intermediate artifact in a HLL e.g., Java or C++, then execute that resulting code. Our research group has developed a class of DSMLs, referred to as interpreted DSMLs (i-DSMLs), where models are directly interpreted by a specialized execution engine with semantics based on model changes at runtime. This execution engine uses a layered architecture and is referred to as a domain-specific virtual machine (DSVM). As the domain-specific model being executed descends the layers of the DSVM the semantic gap between the user-defined model and the services being provided by the underlying infrastructure is closed. The focus of this research is the synthesis engine, the layer in the DSVM which transforms i-DSML models into executable scripts for the next lower layer to process. The appeal of an i-DSML is constrained as it possesses unique semantics contained within the DSVM. Existing DSVMs for i-DSMLs exhibit tight coupling between the implicit model of execution and the semantics of the domain, making it difficult to develop DSVMs for new i-DSMLs without a significant investment in resources. At the onset of this research only one i-DSML had been created for the user- centric communication domain using the aforementioned approach. This i-DSML is the Communication Modeling Language (CML) and its DSVM is the Communication Virtual machine (CVM). A major problem with the CVM’s synthesis engine is that the domain-specific knowledge (DSK) and the model of execution (MoE) are tightly interwoven consequently subsequent DSVMs would need to be developed from inception with no reuse of expertise. This dissertation investigates how to decouple the DSK from the MoE and sub- sequently producing a generic model of execution (GMoE) from the remaining appli- cation logic. This GMoE can be reused to instantiate synthesis engines for DSVMs in other domains. The generalized approach to developing the model synthesis com- ponent of i-DSML interpreters utilizes a reusable framework loosely coupled to DSK as swappable framework extensions. This approach involves first creating an i-DSML and its DSVM for a second do- main, demand-side smartgrid, or microgrid energy management, and designing the synthesis engine so that the DSK and MoE are easily decoupled. To validate the utility of the approach, the SEs are instantiated using the GMoE and DSKs of the two aforementioned domains and an empirical study to support our claim of reduced developmental effort is performed.
Resumo:
Digital systems can generate left and right audio channels that create the effect of virtual sound source placement (spatialization) by processing an audio signal through pairs of Head-Related Transfer Functions (HRTFs) or, equivalently, Head-Related Impulse Responses (HRIRs). The spatialization effect is better when individually-measured HRTFs or HRIRs are used than when generic ones (e.g., from a mannequin) are used. However, the measurement process is not available to the majority of users. There is ongoing interest to find mechanisms to customize HRTFs or HRIRs to a specific user, in order to achieve an improved spatialization effect for that subject. Unfortunately, the current models used for HRTFs and HRIRs contain over a hundred parameters and none of those parameters can be easily related to the characteristics of the subject. This dissertation proposes an alternative model for the representation of HRTFs, which contains at most 30 parameters, all of which have a defined functional significance. It also presents methods to obtain the value of parameters in the model to make it approximately equivalent to an individually-measured HRTF. This conversion is achieved by the systematic deconstruction of HRIR sequences through an augmented version of the Hankel Total Least Squares (HTLS) decomposition approach. An average 95% match (fit) was observed between the original HRIRs and those re-constructed from the Damped and Delayed Sinusoids (DDSs) found by the decomposition process, for ipsilateral source locations. The dissertation also introduces and evaluates an HRIR customization procedure, based on a multilinear model implemented through a 3-mode tensor, for mapping of anatomical data from the subjects to the HRIR sequences at different sound source locations. This model uses the Higher-Order Singular Value Decomposition (HOSVD) method to represent the HRIRs and is capable of generating customized HRIRs from easily attainable anatomical measurements of a new intended user of the system. Listening tests were performed to compare the spatialization performance of customized, generic and individually-measured HRIRs when they are used for synthesized spatial audio. Statistical analysis of the results confirms that the type of HRIRs used for spatialization is a significant factor in the spatialization success, with the customized HRIRs yielding better results than generic HRIRs.
Resumo:
In this study, discrete time one-factor models of the term structure of interest rates and their application to the pricing of interest rate contingent claims are examined theoretically and empirically. The first chapter provides a discussion of the issues involved in the pricing of interest rate contingent claims and a description of the Ho and Lee (1986), Maloney and Byrne (1989), and Black, Derman, and Toy (1990) discrete time models. In the second chapter, a general discrete time model of the term structure from which the Ho and Lee, Maloney and Byrne, and Black, Derman, and Toy models can all be obtained is presented. The general model also provides for the specification of an additional model, the ExtendedMB model. The third chapter illustrates the application of the discrete time models to the pricing of a variety of interest rate contingent claims. In the final chapter, the performance of the Ho and Lee, Black, Derman, and Toy, and ExtendedMB models in the pricing of Eurodollar futures options is investigated empirically. The results indicate that the Black, Derman, and Toy and ExtendedMB models outperform the Ho and Lee model. Little difference in the performance of the Black, Derman, and Toy and ExtendedMB models is detected. ^
Resumo:
Today, many organizations are turning to new approaches to building and maintaining information systems (I/S) to cope with a highly competitive business environment. Current anecdotal evidence indicates that the approaches being used improve the effectiveness of software development by encouraging active user participation throughout the development process. Unfortunately, very little is known about how the use of such approaches enhances the ability of team members to develop I/S that are responsive to changing business conditions.^ Drawing from predominant theories of organizational conflict, this study develops and tests a model of conflict among members of a development team. The model proposes that development approaches provide the relevant context conditioning the management and resolution of conflict in software development which, in turn, are crucial for the success of the development process.^ Empirical testing of the model was conducted using data collected through a combination of interviews with I/S executives and surveys of team members and business users at nine organizations. Results of path analysis provide support for the model's main prediction that integrative conflict management and distributive conflict management can contribute to I/S success by influencing differently the manifestation and resolution of conflict in software development. Further, analyses of variance indicate that object-oriented development, when compared to rapid and structured development, appears to produce the lowest levels of conflict management, conflict resolution, and I/S success.^ The proposed model and findings suggest academic implications for understanding the effects of different conflict management behaviors on software development outcomes, and practical implications for better managing the software development process, especially in user-oriented development environments. ^
Resumo:
The objective of this study was to develop a model to predict transport and fate of gasoline components of environmental concern in the Miami River by mathematically simulating the movement of dissolved benzene, toluene, xylene (BTX), and methyl-tertiary-butyl ether (MTBE) occurring from minor gasoline spills in the inter-tidal zone of the river. Computer codes were based on mathematical algorithms that acknowledge the role of advective and dispersive physical phenomena along the river and prevailing phase transformations of BTX and MTBE. Phase transformations included volatilization and settling. ^ The model used a finite-difference scheme of steady-state conditions, with a set of numerical equations that was solved by two numerical methods: Gauss-Seidel and Jacobi iterations. A numerical validation process was conducted by comparing the results from both methods with analytical and numerical reference solutions. Since similar trends were achieved after the numerical validation process, it was concluded that the computer codes algorithmically were correct. The Gauss-Seidel iteration yielded at a faster convergence rate than the Jacobi iteration. Hence, the mathematical code was selected to further develop the computer program and software. The model was then analyzed for its sensitivity. It was found that the model was very sensitive to wind speed but not to sediment settling velocity. ^ A computer software was developed with the model code embedded. The software was provided with two major user-friendly visualized forms, one to interface with the database files and the other to execute and present the graphical and tabulated results. For all predicted concentrations of BTX and MTBE, the maximum concentrations were over an order of magnitude lower than current drinking water standards. It should be pointed out, however, that smaller concentrations than the latter reported standards and values, although not harmful to humans, may be very harmful to organisms of the trophic levels of the Miami River ecosystem and associated waters. This computer model can be used for the rapid assessment and management of the effects of minor gasoline spills on inter-tidal riverine water quality. ^
Resumo:
The main challenges of multimedia data retrieval lie in the effective mapping between low-level features and high-level concepts, and in the individual users' subjective perceptions of multimedia content. ^ The objectives of this dissertation are to develop an integrated multimedia indexing and retrieval framework with the aim to bridge the gap between semantic concepts and low-level features. To achieve this goal, a set of core techniques have been developed, including image segmentation, content-based image retrieval, object tracking, video indexing, and video event detection. These core techniques are integrated in a systematic way to enable the semantic search for images/videos, and can be tailored to solve the problems in other multimedia related domains. In image retrieval, two new methods of bridging the semantic gap are proposed: (1) for general content-based image retrieval, a stochastic mechanism is utilized to enable the long-term learning of high-level concepts from a set of training data, such as user access frequencies and access patterns of images. (2) In addition to whole-image retrieval, a novel multiple instance learning framework is proposed for object-based image retrieval, by which a user is allowed to more effectively search for images that contain multiple objects of interest. An enhanced image segmentation algorithm is developed to extract the object information from images. This segmentation algorithm is further used in video indexing and retrieval, by which a robust video shot/scene segmentation method is developed based on low-level visual feature comparison, object tracking, and audio analysis. Based on shot boundaries, a novel data mining framework is further proposed to detect events in soccer videos, while fully utilizing the multi-modality features and object information obtained through video shot/scene detection. ^ Another contribution of this dissertation is the potential of the above techniques to be tailored and applied to other multimedia applications. This is demonstrated by their utilization in traffic video surveillance applications. The enhanced image segmentation algorithm, coupled with an adaptive background learning algorithm, improves the performance of vehicle identification. A sophisticated object tracking algorithm is proposed to track individual vehicles, while the spatial and temporal relationships of vehicle objects are modeled by an abstract semantic model. ^
Resumo:
As traffic congestion continues to worsen in large urban areas, solutions are urgently sought. However, transportation planning models, which estimate traffic volumes on transportation network links, are often unable to realistically consider travel time delays at intersections. Introducing signal controls in models often result in significant and unstable changes in network attributes, which, in turn, leads to instability of models. Ignoring the effect of delays at intersections makes the model output inaccurate and unable to predict travel time. To represent traffic conditions in a network more accurately, planning models should be capable of arriving at a network solution based on travel costs that are consistent with the intersection delays due to signal controls. This research attempts to achieve this goal by optimizing signal controls and estimating intersection delays accordingly, which are then used in traffic assignment. Simultaneous optimization of traffic routing and signal controls has not been accomplished in real-world applications of traffic assignment. To this end, a delay model dealing with five major types of intersections has been developed using artificial neural networks (ANNs). An ANN architecture consists of interconnecting artificial neurons. The architecture may either be used to gain an understanding of biological neural networks, or for solving artificial intelligence problems without necessarily creating a model of a real biological system. The ANN delay model has been trained using extensive simulations based on TRANSYT-7F signal optimizations. The delay estimates by the ANN delay model have percentage root-mean-squared errors (%RMSE) that are less than 25.6%, which is satisfactory for planning purposes. Larger prediction errors are typically associated with severely oversaturated conditions. A combined system has also been developed that includes the artificial neural network (ANN) delay estimating model and a user-equilibrium (UE) traffic assignment model. The combined system employs the Frank-Wolfe method to achieve a convergent solution. Because the ANN delay model provides no derivatives of the delay function, a Mesh Adaptive Direct Search (MADS) method is applied to assist in and expedite the iterative process of the Frank-Wolfe method. The performance of the combined system confirms that the convergence of the solution is achieved, although the global optimum may not be guaranteed.
Resumo:
Today, the development of domain-specific communication applications is both time-consuming and error-prone because the low-level communication services provided by the existing systems and networks are primitive and often heterogeneous. Multimedia communication applications are typically built on top of low-level network abstractions such as TCP/UDP socket, SIP (Session Initiation Protocol) and RTP (Real-time Transport Protocol) APIs. The User-centric Communication Middleware (UCM) is proposed to encapsulate the networking complexity and heterogeneity of basic multimedia and multi-party communication for upper-layer communication applications. And UCM provides a unified user-centric communication service to diverse communication applications ranging from a simple phone call and video conferencing to specialized communication applications like disaster management and telemedicine. It makes it easier to the development of domain-specific communication applications. The UCM abstraction and API is proposed to achieve these goals. The dissertation also tries to integrate the formal method into UCM development process. The formal model is created for UCM using SAM methodology. Some design errors are found during model creation because the formal method forces to give the precise description of UCM. By using the SAM tool, formal UCM model is translated to Promela formula model. In the dissertation, some system properties are defined as temporal logic formulas. These temporal logic formulas are manually translated to promela formulas which are individually integrated with promela formula model of UCM and verified using SPIN tool. Formal analysis used here helps verify the system properties (for example multiparty multimedia protocol) and dig out the bugs of systems.
Resumo:
The convergence of data, audio and video on IP networks is changing the way individuals, groups and organizations communicate. This diversity of communication media presents opportunities for creating synergistic collaborative communications. This form of collaborative communication is however not without its challenges. The increasing number of communication service providers coupled with a combinatorial mix of offered services, varying Quality-of-Service and oscillating pricing of services increases the complexity for the user to manage and maintain ‘always best’ priced or performance services. Consumers have to manually manage and adapt their communication in line with differences in services across devices, networks and media while ensuring that the usage remain consistent with their intended goals. This dissertation proposes a novel user-centric approach to address this problem. The proposed approach aims to reduce the aforementioned complexity to the user by (1) providing high-level abstractions and a policy based methodology for automated selection of the communication services guided by high-level user policies and (2) providing services through the seamless integration of multiple communication service providers and providing an extensible framework to support the integration of multiple communication service providers. The approach was implemented in the Communication Virtual Machine (CVM), a model-driven technology for realizing communication applications. The CVM includes the Network Communication Broker, the layer responsible for providing a network-independent API to the upper layers of CVM. The initial prototype for the NCB supported only a single communication framework which limited the number, quality and types of services available. Experimental evaluation of the approach show the additional overhead of the approach is minimal compared to the individual communication services frameworks. Additionally the automated approach proposed out performed the individual communication services frameworks for cross framework switching.
Resumo:
Rapid advances in electronic communication devices and technologies have resulted in a shift in the way communication applications are being developed. These new development strategies provide abstract views of the underlying communication technologies and lead to the so-called user-centric communication applications. One user-centric communication (UCC) initiative is the Communication Virtual Machine (CVM) technology, which uses the Communication Modeling Language (CML) for modeling communication services and the CVM for realizing these services. In communication-intensive domains such as telemedicine and disaster management, there is an increasing need for user-centric communication applications that are domain-specific and that support the dynamic coordination of communication services commonly found in collaborative communication scenarios. However, UCC approaches like the CVM offer little support for the dynamic coordination of communication services resulting from inherent dependencies between individual steps of a collaboration task. Users either have to manually coordinate communication services, or reply on a process modeling technique to build customized solutions for services in a specific domain that are usually costly, rigidly defined and technology specific. ^ This dissertation proposes a domain-specific modeling approach to address this problem by extending the CVM technology with communication-specific abstractions of workflow concepts commonly found in business processes. The extension involves (1) the definition of the Workflow Communication Modeling Language (WF-CML), a superset of CML, and (2) the extension of the functionality of CVM to process communication-specific workflows. The definition of WF-CML includes the meta-model and the dynamic semantics for control constructs and concurrency. We also extended the CVM prototype to handle the modeling and realization of WF-CML models. A comparative study of the proposed approach with other workflow environments validates the claimed benefits of WF-CML and CVM.^
Resumo:
Road pricing has emerged as an effective means of managing road traffic demand while simultaneously raising additional revenues to transportation agencies. Research on the factors that govern travel decisions has shown that user preferences may be a function of the demographic characteristics of the individuals and the perceived trip attributes. However, it is not clear what are the actual trip attributes considered in the travel decision- making process, how these attributes are perceived by travelers, and how the set of trip attributes change as a function of the time of the day or from day to day. In this study, operational Intelligent Transportation Systems (ITS) archives are mined and the aggregated preferences for a priced system are extracted at a fine time aggregation level for an extended number of days. The resulting information is related to corresponding time-varying trip attributes such as travel time, travel time reliability, charged toll, and other parameters. The time-varying user preferences and trip attributes are linked together by means of a binary choice model (Logit) with a linear utility function on trip attributes. The trip attributes weights in the utility function are then dynamically estimated for each time of day by means of an adaptive, limited-memory discrete Kalman filter (ALMF). The relationship between traveler choices and travel time is assessed using different rules to capture the logic that best represents the traveler perception and the effect of the real-time information on the observed preferences. The impact of travel time reliability on traveler choices is investigated considering its multiple definitions. It can be concluded based on the results that using the ALMF algorithm allows a robust estimation of time-varying weights in the utility function at fine time aggregation levels. The high correlations among the trip attributes severely constrain the simultaneous estimation of their weights in the utility function. Despite the data limitations, it is found that, the ALMF algorithm can provide stable estimates of the choice parameters for some periods of the day. Finally, it is found that the daily variation of the user sensitivities for different periods of the day resembles a well-defined normal distribution.
Resumo:
Although drug trafficking organizations (DTOs) exist and have an effect on health, crime, economies, and politics, little research has explored these entities as political organizations. Legal interest groups and movements have been found to influence domestic and international politics because they operate within legal parameters. Illicit groups, such as DTOs, have rarely been accounted for—especially in the literature on interest groups—though they play a measurable role in affecting domestic and international politics in similar ways. Using an interest group model, this dissertation analyzed DTOs as illicit interest groups (IIGs) to explain their political influence. The analysis included a study of group formation, development, and demise that examined IIG motivation, organization, and policy impact. The data for the study drew from primary and secondary sources, which include interviews with former DTO members and government officials, government documents, journalistic accounts, memoirs, and academic research. To illustrate the interest group model, the study examined Medellin-based DTO leaders, popularly known as the "Medellin Cartel." In particular, the study focused on the external factors that gave rise to DTOs in Colombia and how Medellin DTOs reacted to the implementation of counternarcotics efforts. The discussion was framed by the implementation of the 1979 Extradition Treaty negotiated between Colombia and the United States. The treaty was significant because as drug trafficking became the principal bilateral issue in the 1980s; extradition became a major method of combating the illicit drug business. The study's findings suggested that Medellin DTO leaders had a one-issue agenda and used a variety of political strategies to influence public opinion and all three branches of government—the judicial, the legislative, and the executive—in an effort to invalidate the 1979 Extradition Treaty. The changes in the life cycle of the 1979 Extradition Treaty correlated with changes in the political power of Medellin-based DTOs vis-à-vis the Colombian government, and international forces such as the U.S. government's push for tougher counternarcotics efforts.
Resumo:
An awareness of mercury (Hg) contamination in various aquatic environments around the world has increased over the past decade, mostly due to its ability to concentrate in the biota. Because the presence and distribution of Hg in aquatic systems depend on many factors (e.g., pe, pH, salinity, temperature, organic and inorganic ligands, sorbents, etc.), it is crucial to understand its fate and transport in the presence of complexing constituents and natural sorbents, under those different factors. An improved understanding of the subject will support the selection of monitoring, remediation, and restoration technologies. The coupling of equilibrium chemical reactions with transport processes in the model PHREEQC offers an advantage in simulating and predicting the fate and transport of aqueous chemical species of interest. Thus, a great variety of reactive transport problems could be addressed in aquatic systems with boundary conditions of specific interest. Nevertheless, PHREEQC lacks a comprehensive thermodynamic database for Hg. Therefore, in order to use PHREEQC to address the fate and transport of Hg in aquatic environments, it is necessary to expand its thermodynamic database, confirm it and then evaluate it in applications where potential exists for its calibration and continued validation. The objectives of this study were twofold: 1) to develop, expand, and confirm the Hg database of the hydrogeochemical PHREEQC to enhance its capability to simulate the fate of Hg species in the presence of complexing constituents and natural sorbents under different conditions of pH, redox, salinity and temperature; and 2) to apply and evaluate the new database in flow and transport scenarios, at two field test beds: Oak Ridge Reservation, Oak Ridge, TN and Everglades National Park, FL, where Hg is present and is of much concern. Overall, this research enhanced the capability of the PHREEQC model to simulate the coupling of the Hg reactions in transport conditions. It also demonstrated its usefulness when applied to field situations.
Resumo:
Personalized recommender systems aim to assist users in retrieving and accessing interesting items by automatically acquiring user preferences from the historical data and matching items with the preferences. In the last decade, recommendation services have gained great attention due to the problem of information overload. However, despite recent advances of personalization techniques, several critical issues in modern recommender systems have not been well studied. These issues include: (1) understanding the accessing patterns of users (i.e., how to effectively model users' accessing behaviors); (2) understanding the relations between users and other objects (i.e., how to comprehensively assess the complex correlations between users and entities in recommender systems); and (3) understanding the interest change of users (i.e., how to adaptively capture users' preference drift over time). To meet the needs of users in modern recommender systems, it is imperative to provide solutions to address the aforementioned issues and apply the solutions to real-world applications. ^ The major goal of this dissertation is to provide integrated recommendation approaches to tackle the challenges of the current generation of recommender systems. In particular, three user-oriented aspects of recommendation techniques were studied, including understanding accessing patterns, understanding complex relations and understanding temporal dynamics. To this end, we made three research contributions. First, we presented various personalized user profiling algorithms to capture click behaviors of users from both coarse- and fine-grained granularities; second, we proposed graph-based recommendation models to describe the complex correlations in a recommender system; third, we studied temporal recommendation approaches in order to capture the preference changes of users, by considering both long-term and short-term user profiles. In addition, a versatile recommendation framework was proposed, in which the proposed recommendation techniques were seamlessly integrated. Different evaluation criteria were implemented in this framework for evaluating recommendation techniques in real-world recommendation applications. ^ In summary, the frequent changes of user interests and item repository lead to a series of user-centric challenges that are not well addressed in the current generation of recommender systems. My work proposed reasonable solutions to these challenges and provided insights on how to address these challenges using a simple yet effective recommendation framework.^