3 resultados para Upper semi-continuity

em Digital Commons at Florida International University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to investigate the common factors and experiences that contribute to the success of high ability Black students enrolled in Frank C. Martin Elementary School, the first school in Florida authorized to offer the International Baccalaureate (IB) Primary Years Programme (PYP). The study further sought to determine ways in which educators and stakeholders assisted in maintaining and in increasing Black students' achievement that motivated and encouraged them to pursue similar programs at the middle and high school levels. ^ Three sources of data were used: (a) individual interviews with fourth and fifth grade high ability Black students using a semi-structured format elicited discussion of their perceptions of the PYP and factors contributing to their success; (b) individual interviews with their fourth and fifth grade teachers elicited discussion of teacher expectations and effective instructional strategies; and (c) a questionnaire asked parents of the participating students their reasons for choosing the PYP, their perceptions of the program, and their own level of involvement in their child's learning. Three separate focus groups gathered further data. ^ The results revealed that the factors contributing to the success of high ability Black elementary school students are consistent with those of students in other racial groups. These are a challenging program, high teacher and parental expectations, strong parental involvement and support, a celebration of culture and diversity in a caring and nurturing environment, and the development and internalization of positive attitudes. ^ Implications for future studies might include a longitudinal study conducted over seven years to trace the achievements of Black students throughout the entire IB Program. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasingly erratic flow in the upper reaches of the Mara River, has directed attention to land use change as the major cause of this problem. The semi-distributed hydrological model SWAT and Landsat imagery were utilized in order to 1) map existing land use practices, 2) determine the impacts of land use change on water flux; and 3) determine the impacts of climate change scenarios on the water flux of the upper Mara River. This study found that land use change scenarios resulted in more erratic discharge while climate change scenarios had a more predictable impact on the discharge and water balance components. The model results showed the flow was more sensitive to the rainfall changes than land use changes but land use changes reduce dry season flows which is a major problem in the basin. Deforestation increased the peak flows which translated to increased sediment loading in the Mara River.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the flow of the Mara River becoming increasingly erratic especially in the upper reaches, attention has been directed to land use change as the major cause of this problem. The semi-distributed hydrological model Soil and Water Assessment Tool 5 (SWAT) and Landsat imagery were utilized in the upper Mara River Basin in order to 1) map existing field scale land use practices in order to determine their impact 2) determine the impacts of land use change on water flux; and 3) determine the impacts of rainfall (0%, ±10% and ±20%) and air temperature variations (0% and +5%) based on the Intergovernmental Panel on Climate Change projections on the water flux of the 10 upper Mara River. This study found that the different scenarios impacted on the water balance components differently. Land use changes resulted in a slightly more erratic discharge while rainfall and air temperature changes had a more predictable impact on the discharge and water balance components. These findings demonstrate that the model results 15 show the flow was more sensitive to the rainfall changes than land use changes. It was also shown that land use changes can reduce dry season flow which is the most important problem in the basin. The model shows also deforestation in the Mau Forest increased the peak flows which can also lead to high sediment loading in the Mara River. The effect of the land use and climate change scenarios on the sediment and 20 water quality of the river needs a thorough understanding of the sediment transport processes in addition to observed sediment and water quality data for validation of modeling results.