7 resultados para Unsteady flow (Fluid dynamics)

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to gain further understanding and elucidation of the fluid dynamic factors and flow-induced mechanisms of the thrombogenic process of platelet deposition onto, and possible subsequent embolization from, the walls of an arterial stenosis. This has been accomplished by measurement of the axial dependence of platelet deposition within a modeled arterial stenosis for a transitional flow and a completely laminar flow field. The stenotic region of the model was collagen-coated to simulate a damaged endothelial lining of an artery. Fluid dynamics within a stenosis was studied using qualitative flow visualization, and was further compared to the in vitro platelet deposition studies. Normalized platelet density (NPD) measurements indicate decreased levels of NPD in the high shear throat region of the stenosis for a Reynolds number of 300 and a drastic increase in NPD at the throat for a Reynolds number of 175. This study provides further understanding of the flow dynamic effects on thrombus development within a stenosis. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent technological developments have made it possible to design various microdevices where fluid flow and heat transfer are involved. For the proper design of such systems, the governing physics needs to be investigated. Due to the difficulty to study complex geometries in micro scales using experimental techniques, computational tools are developed to analyze and simulate flow and heat transfer in microgeometries. However, conventional numerical methods using the Navier-Stokes equations fail to predict some aspects of microflows such as nonlinear pressure distribution, increase mass flow rate, slip flow and temperature jump at the solid boundaries. This necessitates the development of new computational methods which depend on the kinetic theory that are both accurate and computationally efficient. In this study, lattice Boltzmann method (LBM) was used to investigate the flow and heat transfer in micro sized geometries. The LBM depends on the Boltzmann equation which is valid in the whole rarefaction regime that can be observed in micro flows. Results were obtained for isothermal channel flows at Knudsen numbers higher than 0.01 at different pressure ratios. LBM solutions for micro-Couette and micro-Poiseuille flow were found to be in good agreement with the analytical solutions valid in the slip flow regime (0.01 < Kn < 0.1) and direct simulation Monte Carlo solutions that are valid in the transition regime (0.1 < Kn < 10) for pressure distribution and velocity field. The isothermal LBM was further extended to simulate flows including heat transfer. The method was first validated for continuum channel flows with and without constrictions by comparing the thermal LBM results against accurate solutions obtained from analytical equations and finite element method. Finally, the capability of thermal LBM was improved by adding the effect of rarefaction and the method was used to analyze the behavior of gas flow in microchannels. The major finding of this research is that, the newly developed particle-based method described here can be used as an alternative numerical tool in order to study non-continuum effects observed in micro-electro-mechanical-systems (MEMS).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study is to identify the optimal designs of converging-diverging supersonic and hypersonic nozzles that perform at maximum uniformity of thermodynamic and flow-field properties with respect to their average values at the nozzle exit. Since this is a multi-objective design optimization problem, the design variables used are parameters defining the shape of the nozzle. This work presents how variation of such parameters can influence the nozzle exit flow non-uniformities. A Computational Fluid Dynamics (CFD) software package, ANSYS FLUENT, was used to simulate the compressible, viscous gas flow-field in forty nozzle shapes, including the heat transfer analysis. The results of two turbulence models, k-e and k-ω, were computed and compared. With the analysis results obtained, the Response Surface Methodology (RSM) was applied for the purpose of performing a multi-objective optimization. The optimization was performed with ModeFrontier software package using Kriging and Radial Basis Functions (RBF) response surfaces. Final Pareto optimal nozzle shapes were then analyzed with ANSYS FLUENT to confirm the accuracy of the optimization process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Buildings and other infrastructures located in the coastal regions of the US have a higher level of wind vulnerability. Reducing the increasing property losses and causalities associated with severe windstorms has been the central research focus of the wind engineering community. The present wind engineering toolbox consists of building codes and standards, laboratory experiments, and field measurements. The American Society of Civil Engineers (ASCE) 7 standard provides wind loads only for buildings with common shapes. For complex cases it refers to physical modeling. Although this option can be economically viable for large projects, it is not cost-effective for low-rise residential houses. To circumvent these limitations, a numerical approach based on the techniques of Computational Fluid Dynamics (CFD) has been developed. The recent advance in computing technology and significant developments in turbulence modeling is making numerical evaluation of wind effects a more affordable approach. The present study targeted those cases that are not addressed by the standards. These include wind loads on complex roofs for low-rise buildings, aerodynamics of tall buildings, and effects of complex surrounding buildings. Among all the turbulence models investigated, the large eddy simulation (LES) model performed the best in predicting wind loads. The application of a spatially evolving time-dependent wind velocity field with the relevant turbulence structures at the inlet boundaries was found to be essential. All the results were compared and validated with experimental data. The study also revealed CFD's unique flow visualization and aerodynamic data generation capabilities along with a better understanding of the complex three-dimensional aerodynamics of wind-structure interactions. With the proper modeling that realistically represents the actual turbulent atmospheric boundary layer flow, CFD can offer an economical alternative to the existing wind engineering tools. CFD's easy accessibility is expected to transform the practice of structural design for wind, resulting in more wind-resilient and sustainable systems by encouraging optimal aerodynamic and sustainable structural/building design. Thus, this method will help ensure public safety and reduce economic losses due to wind perils.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work is to present a methodology to develop cost-effective thermal management solutions for microelectronic devices, capable of removing maximum amount of heat and delivering maximally uniform temperature distributions. The topological and geometrical characteristics of multiple-story three-dimensional branching networks of microchannels were developed using multi-objective optimization. A conjugate heat transfer analysis software package and an automatic 3D microchannel network generator were developed and coupled with a modified version of a particle-swarm optimization algorithm with a goal of creating a design tool for 3D networks of optimized coolant flow passages. Numerical algorithms in the conjugate heat transfer solution package include a quasi-ID thermo-fluid solver and a steady heat diffusion solver, which were validated against results from high-fidelity Navier-Stokes equations solver and analytical solutions for basic fluid dynamics test cases. Pareto-optimal solutions demonstrate that thermal loads of up to 500 W/cm2 can be managed with 3D microchannel networks, with pumping power requirements up to 50% lower with respect to currently used high-performance cooling technologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Buildings and other infrastructures located in the coastal regions of the US have a higher level of wind vulnerability. Reducing the increasing property losses and causalities associated with severe windstorms has been the central research focus of the wind engineering community. The present wind engineering toolbox consists of building codes and standards, laboratory experiments, and field measurements. The American Society of Civil Engineers (ASCE) 7 standard provides wind loads only for buildings with common shapes. For complex cases it refers to physical modeling. Although this option can be economically viable for large projects, it is not cost-effective for low-rise residential houses. To circumvent these limitations, a numerical approach based on the techniques of Computational Fluid Dynamics (CFD) has been developed. The recent advance in computing technology and significant developments in turbulence modeling is making numerical evaluation of wind effects a more affordable approach. The present study targeted those cases that are not addressed by the standards. These include wind loads on complex roofs for low-rise buildings, aerodynamics of tall buildings, and effects of complex surrounding buildings. Among all the turbulence models investigated, the large eddy simulation (LES) model performed the best in predicting wind loads. The application of a spatially evolving time-dependent wind velocity field with the relevant turbulence structures at the inlet boundaries was found to be essential. All the results were compared and validated with experimental data. The study also revealed CFD’s unique flow visualization and aerodynamic data generation capabilities along with a better understanding of the complex three-dimensional aerodynamics of wind-structure interactions. With the proper modeling that realistically represents the actual turbulent atmospheric boundary layer flow, CFD can offer an economical alternative to the existing wind engineering tools. CFD’s easy accessibility is expected to transform the practice of structural design for wind, resulting in more wind-resilient and sustainable systems by encouraging optimal aerodynamic and sustainable structural/building design. Thus, this method will help ensure public safety and reduce economic losses due to wind perils.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Designing turbines for either aerospace or power production is a daunting task for any heat transfer scientist or engineer. Turbine designers are continuously pursuing better ways to convert the stored chemical energy in the fuel into useful work with maximum efficiency. Based on thermodynamic principles, one way to improve thermal efficiency is to increase the turbine inlet pressure and temperature. Generally, the inlet temperature may exceed the capabilities of standard materials for safe and long-life operation of the turbine. Next generation propulsion systems, whether for new supersonic transport or for improving existing aviation transport, will require more aggressive cooling system for many hot-gas-path components of the turbine. Heat pipe technology offers a possible cooling technique for the structures exposed to the high heat fluxes. Hence, the objective of this dissertation is to develop new radially rotating heat pipe systems that integrate multiple rotating miniature heat pipes with a common reservoir for a more effective and practical solution to turbine or compressor cooling. In this dissertation, two radially rotating miniature heat pipes and two sector heat pipes are analyzed and studied by utilizing suitable fluid flow and heat transfer modeling along with experimental tests. Analytical solutions for the film thickness and the lengthwise vapor temperature distribution for a single heat pipe are derived. Experimental tests on single radially rotating miniature heat pipes and sector heat pipes are undertaken with different important parameters and the manner in which these parameters affect heat pipe operation. Analytical and experimental studies have proven that the radially rotating miniature heat pipes have an incredibly high effective thermal conductance and an enormous heat transfer capability. Concurrently, the heat pipe has an uncomplicated structure and relatively low manufacturing costs. The heat pipe can also resist strong vibrations and is well suited for a high temperature environment. Hence, the heat pipes with a common reservoir make incorporation of heat pipes into turbo-machinery much more feasible and cost effective.