5 resultados para Uncertainty management
em Digital Commons at Florida International University
Resumo:
Each disaster presents itself with a unique set of characteristics that are hard to determine a priori. Thus disaster management tasks are inherently uncertain, requiring knowledge sharing and quick decision making that involves coordination across different levels and collaborators. While there has been an increasing interest among both researchers and practitioners in utilizing knowledge management to improve disaster management, little research has been reported about how to assess the dynamic nature of disaster management tasks, and what kinds of knowledge sharing are appropriate for different dimensions of task uncertainty characteristics. ^ Using combinations of qualitative and quantitative methods, this research study developed the dimensions and their corresponding measures of the uncertain dynamic characteristics of disaster management tasks and tested the relationships between the various dimensions of uncertain dynamic disaster management tasks and task performance through the moderating and mediating effects of knowledge sharing. ^ Furthermore, this research work conceptualized and assessed task uncertainty along three dimensions: novelty, unanalyzability, and significance; knowledge sharing along two dimensions: knowledge sharing purposes and knowledge sharing mechanisms; and task performance along two dimensions: task effectiveness and task efficiency. Analysis results of survey data collected from Miami-Dade County emergency managers suggested that knowledge sharing purposes and knowledge sharing mechanisms moderate and mediate uncertain dynamic disaster management task and task performance. Implications for research and practice as well directions for future research are discussed.^
Resumo:
Computer networks produce tremendous amounts of event-based data that can be collected and managed to support an increasing number of new classes of pervasive applications. Examples of such applications are network monitoring and crisis management. Although the problem of distributed event-based management has been addressed in the non-pervasive settings such as the Internet, the domain of pervasive networks has its own characteristics that make these results non-applicable. Many of these applications are based on time-series data that possess the form of time-ordered series of events. Such applications also embody the need to handle large volumes of unexpected events, often modified on-the-fly, containing conflicting information, and dealing with rapidly changing contexts while producing results with low-latency. Correlating events across contextual dimensions holds the key to expanding the capabilities and improving the performance of these applications. This dissertation addresses this critical challenge. It establishes an effective scheme for complex-event semantic correlation. The scheme examines epistemic uncertainty in computer networks by fusing event synchronization concepts with belief theory. Because of the distributed nature of the event detection, time-delays are considered. Events are no longer instantaneous, but duration is associated with them. Existing algorithms for synchronizing time are split into two classes, one of which is asserted to provide a faster means for converging time and hence better suited for pervasive network management. Besides the temporal dimension, the scheme considers imprecision and uncertainty when an event is detected. A belief value is therefore associated with the semantics and the detection of composite events. This belief value is generated by a consensus among participating entities in a computer network. The scheme taps into in-network processing capabilities of pervasive computer networks and can withstand missing or conflicting information gathered from multiple participating entities. Thus, this dissertation advances knowledge in the field of network management by facilitating the full utilization of characteristics offered by pervasive, distributed and wireless technologies in contemporary and future computer networks.
Resumo:
Investigation of the performance of engineering project organizations is critical for understanding and eliminating inefficiencies in today’s dynamic global markets. The existing theoretical frameworks consider project organizations as monolithic systems and attribute the performance of project organizations to the characteristics of the constituents. However, project organizations consist of complex interdependent networks of agents, information, and resources whose interactions give rise to emergent properties that affect the overall performance of project organizations. Yet, our understanding of the emergent properties in project organizations and their impact on project performance is rather limited. This limitation is one of the major barriers towards creation of integrated theories of performance assessment in project organizations. The objective of this paper is to investigate the emergent properties that affect the ability of project organization to cope with uncertainty. Based on the theories of complex systems, we propose and test a novel framework in which the likelihood of performance variations in project organizations could be investigated based on the environment of uncertainty (i.e., static complexity, dynamic complexity, and external source of disruption) as well as the emergent properties (i.e., absorptive capacity, adaptive capacity, and restorative capacity) of project organizations. The existence and significance of different dimensions of the environment of uncertainty and emergent properties in the proposed framework are tested based on the analysis of the information collected from interviews with senior project managers in the construction industry. The outcomes of this study provide a novel theoretical lens for proactive bottom-up investigation of performance in project organizations at the interface of emergent properties and uncertainty
Resumo:
Hydrologic modifications have negatively impacted the Florida Everglades in numerous significant ways. The compartmentalization of the once continuously flowing system into the Water Conservation Areas (WCAs) caused disruption of the slow natural flow of water south from Lake Okeechobee through the Everglades to Florida Bay. The ponding of water in the WCAs, the linking of water flow to controlled water levels, and the management of water levels for anthropogenic vs. ecological well-being has caused a reduction in the spatial heterogeneity of the Everglades leading to greater uniformity in topography and vegetation. These effects are noticeable as the degradation in structure of the Everglades Ridge and Slough environment and associated Tree Islands. In aquatic systems water flow is of fundamental importance in shaping the structure and function of the ecosystem. The organized patterns of parallel orientation of ridges, sloughs, and tear-drop shaped tree islands along historic flow paths attest to the importance of water movement in structuring this system. Our main objective was to operate and manage the LILA facility to provide a broad potential as a research platform for an integrated group of multidisciplinary, multi-agency scientists collaborating on multifunctional studies aimed primarily at determining the effects of CERP water management scenarios on the ecology of tree islands and ridge and slough habitats. We support Everglades water management, CERP, and the Long-Term Plan by defining hydrologic regimes that sustain healthy tree islands and ridge and slough ecosystems. Information gained through this project will help to reduce the uncertainty of predicting the tree island and ridge and slough ecosystem response to changes in hydrologic conditions. Additionally, we have developed the LILA site as a visual example of Everglades restoration programs in action.
Resumo:
Computer networks produce tremendous amounts of event-based data that can be collected and managed to support an increasing number of new classes of pervasive applications. Examples of such applications are network monitoring and crisis management. Although the problem of distributed event-based management has been addressed in the non-pervasive settings such as the Internet, the domain of pervasive networks has its own characteristics that make these results non-applicable. Many of these applications are based on time-series data that possess the form of time-ordered series of events. Such applications also embody the need to handle large volumes of unexpected events, often modified on-the-fly, containing conflicting information, and dealing with rapidly changing contexts while producing results with low-latency. Correlating events across contextual dimensions holds the key to expanding the capabilities and improving the performance of these applications. This dissertation addresses this critical challenge. It establishes an effective scheme for complex-event semantic correlation. The scheme examines epistemic uncertainty in computer networks by fusing event synchronization concepts with belief theory. Because of the distributed nature of the event detection, time-delays are considered. Events are no longer instantaneous, but duration is associated with them. Existing algorithms for synchronizing time are split into two classes, one of which is asserted to provide a faster means for converging time and hence better suited for pervasive network management. Besides the temporal dimension, the scheme considers imprecision and uncertainty when an event is detected. A belief value is therefore associated with the semantics and the detection of composite events. This belief value is generated by a consensus among participating entities in a computer network. The scheme taps into in-network processing capabilities of pervasive computer networks and can withstand missing or conflicting information gathered from multiple participating entities. Thus, this dissertation advances knowledge in the field of network management by facilitating the full utilization of characteristics offered by pervasive, distributed and wireless technologies in contemporary and future computer networks.