7 resultados para Ultra-high energies

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application of advanced materials in infrastructure has grown rapidly in recent years mainly because of their potential to ease the construction, extend the service life, and improve the performance of structures. Ultra-high performance concrete (UHPC) is one such material considered as a novel alternative to conventional concrete. The material microstructure in UHPC is optimized to significantly improve its material properties including compressive and tensile strength, modulus of elasticity, durability, and damage tolerance. Fiber-reinforced polymer (FRP) composite is another novel construction material with excellent properties such as high strength-to-weight and stiffness-to-weight ratios and good corrosion resistance. Considering the exceptional properties of UHPC and FRP, many advantages can result from the combined application of these two advanced materials, which is the subject of this research. The confinement behavior of UHPC was studied for the first time in this research. The stress-strain behavior of a series of UHPC-filled fiber-reinforced polymer (FRP) tubes with different fiber types and thicknesses were tested under uniaxial compression. The FRP confinement was shown to significantly enhance both the ultimate strength and strain of UHPC. It was also shown that existing confinement models are incapable of predicting the behavior of FRP-confined UHPC. Therefore, new stress-strain models for FRP-confined UHPC were developed through an analytical study. In the other part of this research, a novel steel-free UHPC-filled FRP tube (UHPCFFT) column system was developed and its cyclic behavior was studied. The proposed steel-free UHPCFFT column showed much higher strength and stiffness, with a reasonable ductility, as compared to its conventional reinforced concrete (RC) counterpart. Using the results of the first phase of column tests, a second series of UHPCFFT columns were made and studied under pseudo-static loading to study the effect of column parameters on the cyclic behavior of UHPCFFT columns. Strong correlations were noted between the initial stiffness and the stiffness index, and between the moment capacity and the reinforcement index. Finally, a thorough analytical study was carried out to investigate the seismic response of the proposed steel-free UHPCFFT columns, which showed their superior earthquake resistance, as compared to their RC counterparts.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

QCD predicts Color Transparency (CT), which refers to nuclear medium becoming transparent to a small color neutral object produced in high momentum transfer reactions, due to reduced strong interaction. Despite several studies at BNL, SLAC, FNAL, DESY and Jefferson Lab, a definitive signal for CT still remains elusive. In this dissertation, we present the results of a new study at Jefferson Lab motivated by theoretical calculations that suggest fully exclusive measurement of coherent rho meson electroproduction off the deuteron is a favorable channel for studying CT. Vector meson production has a large cross section at high energies, and the deuteron is the best understood and simplest nuclear system. Exclusivity allows the production and propagation to be controlled separately by controlling Q 2, lf (formation length), lc (coherence length) and t. This control is important as the rapid expansion of small objects increases their interaction probability and masks CT. The CT signal is investigated in a ratio of cross sections at high t (where re-scattering is significant) to low t (where single nucleon reactions dominate). The results are presented over a Q2 range of 1 to 3 GeV2 based on the data taken with beam energy of 6 GeV.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Most of the moveable bridges use open grid steel decks, because these are factory assembled, light-weight, and easy to install. Open grid steel decks, however, are not as skid resistant as solid decks. Costly maintenance, high noise levels, poor riding comfort and susceptibility to vibrations are among the other disadvantages of these decks. The major objective of this research was to develop alternative deck systems which weigh no more than 25 lb/ft2, have solid riding surface, are no more than 4–5 in. thick and are able to withstand prescribed loading. Three deck systems were considered in this study: ultra-high performance concrete (UHPC) deck, aluminum deck and UHPC-fiber reinforced polymer (FRP) tube deck. UHPC deck was the first alternative system developed as a part of this project. Due to its ultra high strength, this type of concrete results in thinner sections, which helps satisfy the strict self-weight limit. A comprehensive experimental and analytical evaluation of the system was carried out to establish its suitability. Both single and multi-unit specimens with one or two spans were tested for static and dynamic loading. Finite element models were developed to predict the deck behavior. The study led to the conclusion that the UHPC bridge deck is a feasible alternative to open grid steel deck. Aluminum deck was the second alternative system studied in this project. A detailed experimental and analytical evaluation of the system was carried out. The experimental work included static and dynamic loading on the deck panels and connections. Analytical work included detailed finite element modeling. Based on the in-depth experimental and analytical evaluations, it was concluded that aluminum deck was a suitable alternative to open grid steel decks and is ready for implementation. UHPC-FRP tube deck was the third system developed in this research. Prestressed hollow core decks are commonly used, but the proposed type of steel-free deck is quite novel. Preliminary experimental evaluations of two simple-span specimens, one with uniform section and the other with tapered section were carried out. The system was shown to have good promise to replace the conventional open grid decks. Additional work, however, is needed before the system is recommended for field application.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A comprehensive method for the analysis of 11 target pharmaceuticals representing multiple therapeutic classes was developed for biological tissues (fish) and water. Water samples were extracted using solid phase extraction (SPE), while fish tissue homogenates were extracted using accelerated solvent extraction (ASE) followed by mixed-mode cation exchange SPE cleanup and analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS). Among the 11 target pharmaceuticals analyzed, trimethoprim, caffeine, sulfamethoxazole, diphenhydramine, diltiazem, carbamazepine, erythromycin and fluoxetine were consistently detected in reclaimed water. On the other hand, caffeine, diphenhydramine and carbamazepine were consistently detected in fish and surface water samples. In order to understand the uptake and depuration of pharmaceuticals as well as bioconcentration factors (BCFs) under the worst-case conditions, mosquito fish were exposed to reclaimed water under static-renewal for 7 days, followed by a 14-day depuration phase in clean water. Characterization of the exposure media revealed the presence of 26 pharmaceuticals while 5 pharmaceuticals including caffeine, diphenhydramine, diltiazem, carbamazepine, and ibuprofen were present in the organisms as early as 5 h from the start of the exposure. Liquid chromatography ultra-high resolution Orbitrap mass spectrometry was explored as a tool to identify and quantify phase II pharmaceutical metabolites in reclaimed water. The resulting data confirmed the presence of acetyl-sulfamethoxazole and sulfamethoxazole glucuronide in reclaimed water. To my knowledge, this is the first known report of sulfamethoxazole glucuronide surviving intact through wastewater treatment plants and occurring in environmental water samples. Finally, five bioaccumulative pharmaceuticals including caffeine, carbamazepine, diltiazem, diphenhydramine and ibuprofen detected in reclaimed water were investigated regarding the acute and chronic risks to aquatic organisms. The results indicated a low potential risk of carbamazepine even under the worst case exposure scenario. Given the dilution factors that affect environmental releases, the risk of exposure to carbamazepine will be even more reduced.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A comprehensive method for the analysis of 11 target pharmaceuticals representing multiple therapeutic classes was developed for biological tissues (fish) and water. Water samples were extracted using solid phase extraction (SPE), while fish tissue homogenates were extracted using accelerated solvent extraction (ASE) followed by mixed-mode cation exchange SPE cleanup and analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS). Among the 11 target pharmaceuticals analyzed, trimethoprim, caffeine, sulfamethoxazole, diphenhydramine, diltiazem, carbamazepine, erythromycin and fluoxetine were consistently detected in reclaimed water. On the other hand, caffeine, diphenhydramine and carbamazepine were consistently detected in fish and surface water samples. In order to understand the uptake and depuration of pharmaceuticals as well as bioconcentration factors (BCFs) under the worst-case conditions, mosquito fish were exposed to reclaimed water under static-renewal for 7 days, followed by a 14-day depuration phase in clean water. Characterization of the exposure media revealed the presence of 26 pharmaceuticals while 5 pharmaceuticals including caffeine, diphenhydramine, diltiazem, carbamazepine, and ibuprofen were present in the organisms as early as 5 h from the start of the exposure. Liquid chromatography ultra-high resolution Orbitrap mass spectrometry was explored as a tool to identify and quantify phase II pharmaceutical metabolites in reclaimed water. The resulting data confirmed the presence of acetyl-sulfamethoxazole and sulfamethoxazole glucuronide in reclaimed water. To my knowledge, this is the first known report of sulfamethoxazole glucuronide surviving intact through wastewater treatment plants and occurring in environmental water samples. Finally, five bioaccumulative pharmaceuticals including caffeine, carbamazepine, diltiazem, diphenhydramine and ibuprofen detected in reclaimed water were investigated regarding the acute and chronic risks to aquatic organisms. The results indicated a low potential risk of carbamazepine even under the worst case exposure scenario. Given the dilution factors that affect environmental releases, the risk of exposure to carbamazepine will be even more reduced.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hypersonic aerospace vehicles are severely limited by the lack of adequate high temperature materials that can withstand the harsh hypersonic environment. Tantalum carbide (TaC), with a melting point of 3880°C, is an ultrahigh temperature ceramic (UHTC) with potential applications such as scramjet engines, leading edges, and zero erosion nozzles. However, consolidation of TaC to a dense structure and its low fracture toughness are major challenges that make it currently unviable for hypersonic applications. In this study, Graphene NanoPlatelets (GNP) reinforced TaC composites are synthesized by spark plasma sintering (SPS) at extreme conditions of 1850˚C and 80-100 MPa. The addition of GNP improves densification and enhances fracture toughness of TaC by up to ~100% through mechanisms such as GNP bending, sliding, pull-out, grain wrapping, crack bridging, and crack deflection. Also, TaC-GNP composites display improved oxidation behavior over TaC when exposed to a high temperature plasma flow exceeding 2500 ˚C.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Simulations suggest that photomixing in resonant laser-assisted field emission could be used to generate and detect signals from DC to 100 THz. It is the objective of this research to develop a system to efficiently couple the microwave signals generated on an emitting tip by optical mixing. Four different methods for coupling are studied. Tapered Goubau line is found to be the most suitable. Goubau line theory is reviewed, and programs are written to determine loss on the line. From this, Goubau tapers are designed that have a 1:100 bandwidth. These tapers are finally simulated using finite difference time domain, to find the optimum design parameters. Tapered Goubau line is an effective method for coupling power from the field emitting tip. It has large bandwidth, and acceptable loss. Another important consideration is that it is the easiest to manufacture of the four possibilities studied, an important quality for any prototype.