4 resultados para Two-Sided Matching

em Digital Commons at Florida International University


Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study was a qualitative investigation to ascertain and describe two of the current issues at the International Community School of Abidjan, examine their historical bases, and analyze their impact on the school environment.^ Two issues emerged during the inquiry phase of this study: (1) the relationship between local-hired and overseas-hired teachers in light of the January 1994 devaluation which polarized the staff by negating a four-year salary scale that established equity, (2) the school community's wide variance in the perceived power that the U.S. Embassy has on school operations based on its role as ICSA's founding sponsor.^ A multiple studies approach was used in gathering data. An extensive examination of the school's archives was used to reconstruct an historical overview of ICSA. An initial questionnaire was distributed to teachers and administrators at an educational conference to determine the scope of the 1994 devaluation of the West and Central African CFA and its impact on school personnel in West African American-sponsored overseas schools (ASOS). Personal interviews were conducted with the school staff, administration, school board members, and relevant historical participants to determine the principal issues at ICSA at that time. The researcher, an overseas-hired teacher, also used participant observations to collect data. Findings based on these sources were used to analyze the two issues from an historical perspective and to form conclusions.^ Findings in this study pertaining to the events induced by the French and African governments' decision to implement a currency devaluation in January 1994 were presented in ex post-facto chronological narrative form to describe the events which transpired, describe the perception of school personnel involved in these events, examine the final resolution and interpret these events within a historical framework for analysis.^ The topic of the U.S. Embassy and its role at ICSA emerged inductively from open-ended personal interviews conducted over the course of a year. Contradictory perspectives were examined and researched for accuracy and cause. The results of this inquiry presented the U.S. Embassy role at ICSA from a two-sided perspective, examined the historical role of the Embassy, and presented means by which the role and responsibility of the U.S. Embassy could best be communicated to the school community.^ The final chapter provides specific actions for mediation of problems stemming from these issues, implications for administrators and teachers currently involved in overseas schools or considering the possibility, and suggestions for future inquiries.^ Examination of a two-tier salary scale for local-hired and overseas-hired teachers generated the following recommendations: movement towards a single salary scale when feasible, clearly stated personnel policies and full disclosure of benefits, a uniform certification standard, professional development programs and awareness of the impact of this issue on staff morale.^ Divergent perceptions and attitudes toward the role of the U.S. Embassy produced these recommendations: a view towards limiting the number of Americans on ASOS school boards, open school board meetings, selection of Embassy Administrative Officers who can educate school communities on the exact role of the Embassy, educating parents through the outreach activities that communicate American educational philosophy and involve all segments of the international community, and a firm effort on the part of the ASOS to establish the school's autonomy from special interests. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Light transmission was measured through intact, submerged periphyton communities on artificial seagrass leaves. The periphyton communities were representative of the communities on Thalassia testudinum in subtropical seagrass meadows. The periphyton communities sampled were adhered carbonate sediment, coralline algae, and mixed algal assemblages. Crustose or film-forming periphyton assemblages were best prepared for light transmission measurements using artificial leaves fouled on both sides, while measurements through three-dimensional filamentous algae required the periphyton to be removed from one side. For one-sided samples, light transmission could be measured as the difference between fouled and reference artificial leaf samples. For two-sided samples, the percent periphyton light transmission to the leaf surface was calculated as the square root of the fraction of incident light. Linear, exponential, and hyperbolic equations were evaluated as descriptors of the periphyton dry weight versus light transmission relationship. Hyperbolic and exponential decay models were superior to linear models and exhibited the best fits for the observed relationships. Differences between the coefficients of determination (r2) of hyperbolic and exponential decay models were statistically insignificant. Constraining these models for 100% light transmission at zero periphyton load did not result in any statistically significant loss in the explanatory capability of the models. In most all cases, increasing model complexity using three-parameter models rather than two-parameter models did not significantly increase the amount of variation explained. Constrained two-parameter hyperbolic or exponential decay models were judged best for describing the periphyton dry weight versus light transmission relationship. On T. testudinum in Florida Bay and the Florida Keys, significant differences were not observed in the light transmission characteristics of the varying periphyton communities at different study sites. Using pooled data from the study sites, the hyperbolic decay coefficient for periphyton light transmission was estimated to be 4.36 mg dry wt. cm−2. For exponential models, the exponential decay coefficient was estimated to be 0.16 cm2 mg dry wt.−1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of this investigation was to examine how sediment accretion and organic carbon (OC) burial rates in mangrove forests respond to climate change. Specifically, will the accretion rates keep pace with sea-level rise, and what is the source and fate of OC in the system? Mass accumulation, accretion and OC burial rates were determined via 210Pb dating (i.e. 100 year time scale) on sediment cores collected from two mangrove forest sites within Everglades National Park, Florida (USA). Enhanced mass accumulation, accretion and OC burial rates were found in an upper layer that corresponded to a well-documented storm surge deposit. Accretion rates were 5.9 and 6.5 mm yr− 1 within the storm deposit compared to overall rates of 2.5 and 3.6 mm yr− 1. These rates were found to be matching or exceeding average sea-level rise reported for Key West, Florida. Organic carbon burial rates were 260 and 393 g m− 2 yr− 1 within the storm deposit compared to 151 and 168 g m− 2 yr− 1 overall burial rates. The overall rates are similar to global estimates for OC burial in marine wetlands. With tropical storms being a frequent occurrence in this region the resulting storm surge deposits are an important mechanism for maintaining both overall accretion and OC burial rates. Enhanced OC burial rates within the storm deposit could be due to an increase in productivity created from higher concentrations of phosphorus within storm-delivered sediments and/or from the deposition of allochthonous OC. Climate change-amplified storms and sea-level rise could damage mangrove forests, exposing previously buried OC to oxidation and contribute to increasing atmospheric CO2 concentrations. However, the processes described here provide a mechanism whereby oxidation of OC would be limited and the overall OC reservoir maintained within the mangrove forest sediments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of this investigation was to examine how sediment accretion and organic carbon (OC) burial rates in mangrove forests respond to climate change. Specifically, will the accretion rates keep pace with sea-level rise, and what is the source and fate of OC in the system? Mass accumulation, accretion and OC burial rates were determined via 210Pb dating (i.e. 100 year time scale) on sediment cores collected from two mangrove forest sites within Everglades National Park, Florida (USA). Enhanced mass accumulation, accretion and OC burial rates were found in an upper layer that corresponded to a well-documented storm surge deposit. Accretion rates were 5.9 and 6.5 mm yr− 1 within the storm deposit compared to overall rates of 2.5 and 3.6 mm yr− 1. These rates were found to be matching or exceeding average sea-level rise reported for Key West, Florida. Organic carbon burial rates were 260 and 393 g m− 2 yr− 1 within the storm deposit compared to 151 and 168 g m− 2 yr− 1 overall burial rates. The overall rates are similar to global estimates for OC burial in marine wetlands. With tropical storms being a frequent occurrence in this region the resulting storm surge deposits are an important mechanism for maintaining both overall accretion and OC burial rates. Enhanced OC burial rates within the storm deposit could be due to an increase in productivity created from higher concentrations of phosphorus within storm-delivered sediments and/or from the deposition of allochthonous OC. Climate change-amplified storms and sea-level rise could damage mangrove forests, exposing previously buried OC to oxidation and contribute to increasing atmospheric CO2 concentrations. However, the processes described here provide a mechanism whereby oxidation of OC would be limited and the overall OC reservoir maintained within the mangrove forest sediments.