6 resultados para Two Approaches

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research sought to understand the role that differentially assessed lands (lands in the United States given tax breaks in return for their guarantee to remain in agriculture) play in influencing urban growth. Our method was to calibrate the SLEUTH urban growth model under two different conditions. The first used an excluded layer that ignored such lands, effectively rendering them available for development. The second treated those lands as totally excluded from development. Our hypothesis was that excluding those lands would yield better metrics of fit with past data. Our results validate our hypothesis since two different metrics that evaluate goodness of fit both yielded higher values when differentially assessed lands are treated as excluded. This suggests that, at least in our study area, differential assessment, which protects farm and ranch lands for tenuous periods of time, has indeed allowed farmland to resist urban development. Including differentially assessed lands also yielded very different calibrated coefficients of growth as the model tried to account for the same growth patterns over two very different excluded areas. Excluded layer design can greatly affect model behavior. Since differentially assessed lands are quite common through the United States and are often ignored in urban growth modeling, the findings of this research can assist other urban growth modelers in designing excluded layers that result in more accurate model calibration and thus forecasting.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Database design is a difficult problem for non-expert designers. It is desirable to assist such designers during the problem solving process by means of a knowledge based (KB) system. A number of prototype KB systems have been proposed, however there are many shortcomings. Few have incorporated sufficient expertise in modeling relationships, particularly higher order relationships. There has been no empirical study that experimentally tested the effectiveness of any of these KB tools. Problem solving behavior of non-experts, whom the systems were intended to assist, has not been one of the bases for system design. In this project a consulting system for conceptual database design that addresses the above short comings was developed and empirically validated.^ The system incorporates (a) findings on why non-experts commit errors and (b) heuristics for modeling relationships. Two approaches to knowledge base implementation--system restrictiveness and decisional guidance--were used and compared in this project. The Restrictive approach is proscriptive and limits the designer's choices at various design phases by forcing him/her to follow a specific design path. The Guidance system approach which is less restrictive, provides context specific, informative and suggestive guidance throughout the design process. The main objectives of the study are to evaluate (1) whether the knowledge-based system is more effective than a system without the knowledge-base and (2) which knowledge implementation--restrictive or guidance--strategy is more effective. To evaluate the effectiveness of the knowledge base itself, the two systems were compared with a system that does not incorporate the expertise (Control).^ The experimental procedure involved the student subjects solving a task without using the system (pre-treatment task) and another task using one of the three systems (experimental task). The experimental task scores of those subjects who performed satisfactorily in the pre-treatment task were analyzed. Results are (1) The knowledge based approach to database design support lead to more accurate solutions than the control system; (2) No significant difference between the two KB approaches; (3) Guidance approach led to best performance; and (4) The subjects perceived the Restrictive system easier to use than the Guidance system. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The increasing amount of available semistructured data demands efficient mechanisms to store, process, and search an enormous corpus of data to encourage its global adoption. Current techniques to store semistructured documents either map them to relational databases, or use a combination of flat files and indexes. These two approaches result in a mismatch between the tree-structure of semistructured data and the access characteristics of the underlying storage devices. Furthermore, the inefficiency of XML parsing methods has slowed down the large-scale adoption of XML into actual system implementations. The recent development of lazy parsing techniques is a major step towards improving this situation, but lazy parsers still have significant drawbacks that undermine the massive adoption of XML. ^ Once the processing (storage and parsing) issues for semistructured data have been addressed, another key challenge to leverage semistructured data is to perform effective information discovery on such data. Previous works have addressed this problem in a generic (i.e. domain independent) way, but this process can be improved if knowledge about the specific domain is taken into consideration. ^ This dissertation had two general goals: The first goal was to devise novel techniques to efficiently store and process semistructured documents. This goal had two specific aims: We proposed a method for storing semistructured documents that maps the physical characteristics of the documents to the geometrical layout of hard drives. We developed a Double-Lazy Parser for semistructured documents which introduces lazy behavior in both the pre-parsing and progressive parsing phases of the standard Document Object Model’s parsing mechanism. ^ The second goal was to construct a user-friendly and efficient engine for performing Information Discovery over domain-specific semistructured documents. This goal also had two aims: We presented a framework that exploits the domain-specific knowledge to improve the quality of the information discovery process by incorporating domain ontologies. We also proposed meaningful evaluation metrics to compare the results of search systems over semistructured documents. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Given the significant amount of attention placed upon race within our society, racial identity long has been nominated as a meaningful influence upon human development (Cross, 1971; Sellers et al., 1998). Scholars investigating aspects of racial identity have largely pursued one of two lines of research: (a) describing factors and processes that contribute to the development of racial identities, or (b) empirically documenting associations between particular racial identities and key adjustment outcomes. However, few studies have integrated these two approaches to simultaneously evaluate developmental and related adjustment aspects of racial identity among minority youth. Consequently, relations between early racial identity developmental processes and correlated adjustment outcomes remain ambiguous. Even less is known regarding the direction and function of these relationships during adolescence. To address this gap, the present study examined key multivariate associations between (a) distinct profiles of racial identity salience and (b) adjustment outcomes within a community sample of African-American youth. Specifically, a person-centered analytic approach (i.e., cluster analysis) was employed to conduct a secondary analysis of two archived databases containing longitudinal data measuring levels of racial identity salience and indices of psychosocial adjustment among youth at four different measurement occasions.^ Four separate groups of analyses were conducted to investigate (a) the existence of within-group differences in levels of racial identity salience, (b) shifts among distinct racial identity types between contiguous times of measurement, (c) adjustment correlates of racial identity types at each time of measurement, and (d) predictive relations between racial identity clusters and adjustment outcomes, respectively. Results indicated significant heterogeneity in patterns of racial identity salience among these African-American youth as well as significant discontinuity in the patterns of shifts among identity profiles between contiguous measurement occasions. In addition, within developmental stages, levels of racial identity salience were associated with several adjustment outcomes, suggesting the protective value of high levels of endorsement or internalization of racial identity among the sampled youth. Collectively, these results illustrated the significance of racial identity salience as a meaningful developmental construct in the lives of African-American adolescents, the implications of which are discussed for racial identity and practice-related research literatures. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The increasing amount of available semistructured data demands efficient mechanisms to store, process, and search an enormous corpus of data to encourage its global adoption. Current techniques to store semistructured documents either map them to relational databases, or use a combination of flat files and indexes. These two approaches result in a mismatch between the tree-structure of semistructured data and the access characteristics of the underlying storage devices. Furthermore, the inefficiency of XML parsing methods has slowed down the large-scale adoption of XML into actual system implementations. The recent development of lazy parsing techniques is a major step towards improving this situation, but lazy parsers still have significant drawbacks that undermine the massive adoption of XML. Once the processing (storage and parsing) issues for semistructured data have been addressed, another key challenge to leverage semistructured data is to perform effective information discovery on such data. Previous works have addressed this problem in a generic (i.e. domain independent) way, but this process can be improved if knowledge about the specific domain is taken into consideration. This dissertation had two general goals: The first goal was to devise novel techniques to efficiently store and process semistructured documents. This goal had two specific aims: We proposed a method for storing semistructured documents that maps the physical characteristics of the documents to the geometrical layout of hard drives. We developed a Double-Lazy Parser for semistructured documents which introduces lazy behavior in both the pre-parsing and progressive parsing phases of the standard Document Object Model's parsing mechanism. The second goal was to construct a user-friendly and efficient engine for performing Information Discovery over domain-specific semistructured documents. This goal also had two aims: We presented a framework that exploits the domain-specific knowledge to improve the quality of the information discovery process by incorporating domain ontologies. We also proposed meaningful evaluation metrics to compare the results of search systems over semistructured documents.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Database design is a difficult problem for non-expert designers. It is desirable to assist such designers during the problem solving process by means of a knowledge based (KB) system. Although a number of prototype KB systems have been proposed, there are many shortcomings. Firstly, few have incorporated sufficient expertise in modeling relationships, particularly higher order relationships. Secondly, there does not seem to be any published empirical study that experimentally tested the effectiveness of any of these KB tools. Thirdly, problem solving behavior of non-experts, whom the systems were intended to assist, has not been one of the bases for system design. In this project, a consulting system, called CODA, for conceptual database design that addresses the above short comings was developed and empirically validated. More specifically, the CODA system incorporates (a) findings on why non-experts commit errors and (b) heuristics for modeling relationships. Two approaches to knowledge base implementation were used and compared in this project, namely system restrictiveness and decisional guidance (Silver 1990). The Restrictive system uses a proscriptive approach and limits the designer's choices at various design phases by forcing him/her to follow a specific design path. The Guidance system approach, which is less restrictive, involves providing context specific, informative and suggestive guidance throughout the design process. Both the approaches would prevent erroneous design decisions. The main objectives of the study are to evaluate (1) whether the knowledge-based system is more effective than the system without a knowledge-base and (2) which approach to knowledge implementation - whether Restrictive or Guidance - is more effective. To evaluate the effectiveness of the knowledge base itself, the systems were compared with a system that does not incorporate the expertise (Control). An experimental procedure using student subjects was used to test the effectiveness of the systems. The subjects solved a task without using the system (pre-treatment task) and another task using one of the three systems, viz. Control, Guidance or Restrictive (experimental task). Analysis of experimental task scores of those subjects who performed satisfactorily in the pre-treatment task revealed that the knowledge based approach to database design support lead to more accurate solutions than the control system. Among the two KB approaches, Guidance approach was found to lead to better performance when compared to the Control system. It was found that the subjects perceived the Restrictive system easier to use than the Guidance system.