11 resultados para Tropical tree

em Digital Commons at Florida International University


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The improvement of tropical tree crops using conventional breeding methods faces challenges due to the length of time involved. Thus, like most crops, there is an effort to utilize molecular genetic markers in breeding programs to select for desirable agronomic traits. Known as marker assisted breeding or marker assisted selection, genetic markers associated with a phenotype of interest are used to screen and select material reducing the time necessary to evaluate candidates. As the focus of this research was improving disease resistance in tropical trees, the usefulness of the WRKY gene superfamily was investigated as candidates for generating useful molecular genetic markers. WRKY genes encode plant-specific transcriptional factors associated with regulating plants' responses to both biotic and abiotic stress. ^ One pair of degenerate primers amplified 48 WRKY gene fragments from three taxonomically distinct, economically important, tropical tree crop species: 18 from Theobroma cacao L., 21 from Cocos nucifera L. and 9 from Persea americana Mill. Several loci from each species were polymorphic because of single nucleotide substitutions present within a putative non-coding region of the loci. Capillary array electrophoresis-single strand conformational polymorphism (CAE-SSCP) mapped four WRKY loci onto a genetic linkage map of a T. cacao F2 population segregating for resistance to witches' broom disease. Additionally, PCR primers specific for four T. cacao loci successfully amplified WRKY loci from 15 members of the Byttneriae tribe. A method was devised to allow the reliable discrimination of alleles by CAE-SSCP using only the mobility assigned to the sample peaks. Once this method was validated, the diversity of three WRKY loci was evaluated in a germplasm collection of T. cacao . One locus displayed high diversity in the collection, with at least 18 alleles detected from mobility differences of the product peaks. The number of WRKY loci available within the genome, ease of isolation by degenerate PCR, codominant segregation demonstrated in the F2 population, and usefulness for screening germplasm collections and closely related wild species demonstrates that the WRKY superfamily of genes are excellent candidates for developing a number of genetic molecular markers for breeding purposes in tropical trees. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Iridescent blue leaf coloration in four Malaysian rain forest understory plants, Diplazium tomentosum Bl. (Athyriaceae), Lindsaea lucida Bi. (Lindsaeaceae), Begonia pavonina Ridl. (Begoniaceae), and Phyllagathis rotundifolia Bl. (Melastoma- taceae) is caused by a physical effect, constructive interference of reflected blue light. The ultrastructural basis for this in D. tomentosum and L. lucida is multiple layers of cellulose microfibrils in the uppermost cell walls of the adaxial epidermis. The helicoidal arrangement of these fibrils is analogous to that which produces a similar color in arthropods. In B. pavonina and P. rotundifolia the blue-green coloration is caused by parallel lamellae in specialized plastids adjacent to the abaxial wall of the adaxial epidermis. The selective advantage of this color production, if any, is unknown.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In 2005 we began a multi-year intensive monitoring and assessment study of tropical hardwood hammocks within two distinct hydrologic regions in Everglades National Park, under funding from the CERP Monitoring and Assessment Program. In serving as an Annual Report for 2010, this document, reports in detail on the population dynamics and status of tropical hardwood hammocks in Shark Slough and adjacent marl prairies during a 4-year period between 2005 and 2009. 2005-09 was a period that saw a marked drawdown in marsh water levels (July 2006 - July 2008), and an active hurricane season in 2005 with two hurricanes, Hurricane Katrina and Wilma, making landfall over south Florida. Thus much of our focus here is on the responses of these forests to annual variation in marsh water level, and on recovery from disturbance. Most of the data are from 16 rectangular permanent plots of 225-625 m2 , with all trees mapped and tagged, and bi-annual sampling of the tree, sapling, shrub, and herb layer in a nested design. At each visit, canopy photos were taken and later analyzed for determination of interannual variation in leaf area index and canopy openness. Three of the plots were sampled at 2-month intervals, in order to gain a better idea of seasonal dynamics in litterfall and litter turnover. Changes in canopy structure were monitored through a vertical line intercept method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tropical rainforests account for more than a third of global net primary production and contain more than half of the global forest carbon. Though these forests are a disproportionately important component of the global carbon cycle, the relationship between rainforest productivity and climate remains poorly understood. Understanding the link between current climate and rainforest tree stem diameter increment, a major constituent of forest productivity, will be crucial to efforts at modeling future climate and rainforest response to climate change. This work reports the physiological and stem growth responses to micrometeorological and phenological states of ten species of canopy trees in a Costa Rican wet tropical forest at sub-annual time intervals. I measured tree growth using band dendrometers and estimated leaf and reproductive phenological states monthly. Electronic data loggers recorded xylem sap flow (an indicator of photosynthetic rate) and weather at half-hour intervals. An analysis of xylem sap flow showed that physiological responses were independent of species, which allowed me to construct a general model of weather driven sap flow rates. This model predicted more than eighty percent of climate driven sap flow variation. Leaf phenology influenced growth in three of the ten species, with two of these species showing a link between leaf phenology and weather. A combination of rainfall, air temperature, and irradiance likely provided the cues that triggered leaf drop in Dipteryx panamensis and Lecythis ampla. Combining the results of the sap flow model, growth, and the climate measures showed tree growth was correlated to climate, though the majority of growth variation remained unexplained. Low variance in the environmental variables and growth rates likely contributed to the large amount of unexplained variation. A simple model that included previous growth increment and three meteorological variables explained from four to nearly fifty percent of the growth variation. Significant growth carryover existed in six of the ten species, and rainfall was positively correlated to growth in eight of the ten species. Minimum nighttime temperature was also correlated to higher growth rates in five of the species and irradiance in two species. These results indicate that tropical rainforest tree trunks could act as carbon sinks if future climate becomes wetter and slightly warmer. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The subtropical hardwood forests of southern Florida are formed by 120 frost-sensitive, broadleaved angiosperm species that range throughout the Caribbean. Previous work on a series of small sized forest component patches of a 20 km2, forest preserve in northern Key Largo indicate that a shift in species composition was associated with a 100 year forest developmental sequence, and this shift was associated with an increasingly evergreen canopy. This document investigates the underlying differences of the biology of trees that live in this habitat, and is specifically focused on the impact of leaf morphology on changing nutrient cycling patterns. Measurements of the area, thickness, dry mass, nutrient content and longevity of several leaves from 3-4 individuals of ten species were conducted in combination with a two-year leaf litter collection and nutrient analysis to determine that species with thicker, denser leaves cycled scarce nutrients up to 2-3 times more efficiently than thin leaved tree species, and the leaf thickness/density index predicts role in forest development in a parallel direction as the index predicts nutrient cycling efficiency. A three year set of observations on the relative abundance of new leaves, flowers and fruits of the same tree species provides an opportunity to evaluate the consequences the leaf morphology/nutrient cycling/forest development relationship to forest habitat quality. Results of the three documents support a mechanistic link between forest development and nutrient cycling, and suggests that older forests are likely to be better habitats based on the availability of valuable forest products like new leaves, flowers, and fruits throughout the year.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spatial heterogeneity in soils is often characterized by the presence of resource-enriched patches ranging in size from a single shrub to wooded thickets. If the patches persist long enough, the primary constraint on production may transition from one limiting environmental factor to another. Tree islands that are scattered throughout the Florida Everglades basin comprise nutrient-enriched patches, or resource islands, in P-limited oligotrophic marshes. We used principal component analysis and multiple regressions to characterize the belowground environment (soil, hydrology) of one type of tree island, hardwood hammocks, and examined its relationship with the three structural variables (basal area, biomass, and canopy height) indicative of site productivity. Hardwood hammocks in the southern Everglades grow on two distinct soil types. The first, consisting of shallow, organic, relatively low-P soils, is common in the seasonally flooded Marl Prairie landscape. In contrast, hammocks on islands embedded in long hydroperiod marsh have deeper, alkaline, mineral soils with extremely high P concentrations. However, this edaphic variation does not translate simply into differences in forest structure and production. Relative water depth was unrelated to all measures of forest structure and so was soil P, but the non-carbonate component of the mineral soil fraction exhibited a strong positive relationship with canopy height. The development of P-enriched forest resource islands in the Everglades marsh is accompanied by the buildup of a mineral soil; however, limitations on growth in mature islands appear to differ substantively from those that dominate incipient stages in the transformation from marsh to forest. Key words: resource island; tree

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In south Florida, tropical hardwood forests (hammocks) occur in Everglades tree islands and as more extensive forests in coastal settings in the nearby Florida Keys. Keys hammocks have been less disturbed by humans, and many qualify as “old-growth,” while Everglades hammocks have received much heavier use. With improvement of tree island condition an important element in Everglades restoration efforts, we examined stand structure in 23 Keys hammocks and 69 Everglades tree islands. Based on Stand Density Index and tree diameter distributions, many Everglades hammocks were characterized by low stocking and under-representation in the smaller size classes. In contrast, most Keys forests had the dense canopies and open understories usually associated with old-growth hardwood hammocks. Subject to the same caveats that apply to off-site references elsewhere, structural information from mature Keys hammocks can be helpful in planning and implementing forest restoration in Everglades tree islands. In many of these islands, such restoration might involve supplementing tree stocking by planting native trees to produce more complete site utilization and a more open understory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In fire-dependent forests, managers are interested in predicting the consequences of prescribed burning on postfire tree mortality. We examined the effects of prescribed fire on tree mortality in Florida Keys pine forests, using a factorial design with understory type, season, and year of burn as factors. We also used logistic regression to model the effects of burn season, fire severity, and tree dimensions on individual tree mortality. Despite limited statistical power due to problems in carrying out the full suite of planned experimental burns, associations with tree and fire variables were observed. Post-fire pine tree mortality was negatively correlated with tree size and positively correlated with char height and percent crown scorch. Unlike post-fire mortality, tree mortality associated with storm surge from Hurricane Wilma was greater in the large size classes. Due to their influence on population structure and fuel dynamics, the size-selective mortality patterns following fire and storm surge have practical importance for using fire as a management tool in Florida Keys pinelands in the future, particularly when the threats to their continued existence from tropical storms and sea level rise are expected to increase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In 2005 we initiated a project designed to better understand tree island structure and function in the Everglades and the wetlands bordering it. Focus was on the raised portions at the upstream end of the islands, where tropical hardwood species adapted to well-drained conditions usually are the most prominent component of the vegetation. The study design is hierarchical, with four levels; in general, a large number of sites is to be surveyed once for a limited set of parameters, and increasingly small sets of islands are to be sampled more intensively, more frequently, and for more aspects of ecosystem function. During the first year of the 3-year study, we completed surveys of 41 Level 1 (i.e., the least intensive level) islands, and established permanent plots in two and three islands of Levels 2 and 4 intensity, respectively. Tree species richness and structural complexity was highest in Shark Slough “hammocks”, while islands in Northeast Shark Slough and Water Conservation Area 3B, which receive heavy human use, were simpler, more park-like communities. Initial monitoring of soil moisture in Level 4 hammocks indicated considerable local variation, presumably associated with antecedent rainfall and current water levels in the adjacent marsh. Tree islands throughout the study area were impacted significantly by Hurricanes Katrina and Wilma in 2005, but appear to be recovering rapidly. As the project continues to include more islands and repeated measurements, we expect to develop a better grasp of tree island dynamics across the Everglades ecosystem, especially with respect to moisture relations and water levels in the adjacent marsh. The detailed progress report which follows is also available online at http://www.fiu.edu/~serp1/projects/treeislands/tree_islands_2005_annual_report.pd

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fire, which affects community structure and composition at all trophic levels, is an integral component of the Everglades ecosystem (Wade et al. 1980; Lockwood et al. 2003). Without fire, the Everglades as we know it today would be a much different place. This is particularly true for the short-hydroperiod marl prairies that predominate on the eastern and western flanks of Shark River Slough, Everglades National Park (Figure 1). In general, fire in a tropical or sub-tropical grassland community favors the dominance of C4 grasses over C3 species (Roscoe et al. 2000; Briggs et al. 2005). Within this pyrogenic graminoid community also, periodic natural fires, together with suitable hydrologic regime, maintain and advance the dominance of C4 vs C3 graminoids (Sah et al. 2008), and suppress the encroachment of woody stems (Hanan et al. 2009; Hanan et al. unpublished manuscript) originating from the tree islands that, in places, dominate the landscape within this community. However, fires, under drought conditions and elevated fuel loads, can spread quickly throughout the landscape, oxidizing organic soils, both in the prairie and in the tree islands, and, in the process, lead to shifts in vegetation composition. This is particularly true when a fire immediately precedes a flood event (Herndon et al. 1991; Lodge 2005; Sah et al. 2010), or if so much soil is consumed during the fire that the hydrologic regime is permanently altered as a result of a decrease in elevation (Zaffke 1983).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study examined how different rainfall regimes affect a set of leaf functional traits related to plant stress and forest structure in tropical dry forest (TDF) species on limestone substrate. One hundred fifty eight individuals of four tree species were sampled in six ecological sites in south Florida and Puerto Rico, ranging in mean annual rainfall from 858 to 1933 mm yr-1. Leaf nitrogen content, specific leaf area (SLA), and N:P ratio of evergreen species, but not deciduous species, responded positively to increasing rainfall. Phosphorus content was unaffected in both groups. Canopy height and basal area reached maxima of 10.3 m and 31.4 m2 ha-1, respectively, at 1168 mm annual rainfall. Leaf traits reflected soil properties only to a small extent. This led us to the conclusion that water is a major limiting factor in TDF and some species that comprise TDF ecosystems are limited by nitrogen in limestone sites with less than ~1012 mm rainfall, but organismal, biological and/or abiotic forces other than rainfall control forest structure in moister sites.