3 resultados para Tropical Estuary
em Digital Commons at Florida International University
Resumo:
The extraction of climatic signals from time series of biogeochemical data is further complicated in estuarine regions because of the dynamic interaction of land, ocean, and atmosphere. We explored the behavior of potential global and regional climatic stressors to isolate specific shifts or trends, which could have a forcing role on the behavior of biogeochemical descriptors of water quality and phytoplankton biomass from Florida Bay, as an example of a sub-tropical estuary. We performed statistical analysis and subdivided the bay into six zones having unique biogeochemical characteristics. Significant shifts in the drivers were identified in all the chlorophyll a time series. Chlorophyll a concentrations closely follow global forcing and display a generalized declining trend on which seasonal oscillations are superimposed, and it is only interrupted by events of sudden increase triggered by storms which are followed by a relatively rapid return to pre-event conditions trailing again the long-term trend.
Resumo:
From 8/95 to 2/01, we investigated the ecological effects of intra- and inter-annual variability in freshwater flow through Taylor Creek in southeastern Everglades National Park. Continuous monitoring and intensive sampling studies overlapped with an array of pulsed weather events that impacted physical, chemical, and biological attributes of this region. We quantified the effects of three events representing a range of characteristics (duration, amount of precipitation, storm intensity, wind direction) on the hydraulic connectivity, nutrient and sediment dynamics, and vegetation structure of the SE Everglades estuarine ecotone. These events included a strong winter storm in November 1996, Tropical Storm Harvey in September 1999, and Hurricane Irene in October 1999. Continuous hydrologic and daily water sample data were used to examine the effects of these events on the physical forcing and quality of water in Taylor Creek. A high resolution, flow-through sampling and mapping approach was used to characterize water quality in the adjacent bay. To understand the effects of these events on vegetation communities, we measured mangrove litter production and estimated seagrass cover in the bay at monthly intervals. We also quantified sediment deposition associated with Hurricane Irene's flood surge along the Buttonwood Ridge. These three events resulted in dramatic changes in surface water movement and chemistry in Taylor Creek and adjacent regions of Florida Bay as well as increased mangrove litterfall and flood surge scouring of seagrass beds. Up to 5 cm of bay-derived mud was deposited along the ridge adjacent to the creek in this single pulsed event. These short-term events can account for a substantial proportion of the annual flux of freshwater and materials between the mangrove zone and Florida Bay. Our findings shed light on the capacity of these storm events, especially when in succession, to have far reaching and long lasting effects on coastal ecosystems such as the estuarine ecotone of the SE Everglades.
Resumo:
We used longline fishing to determine the effects of distance from the ocean, season, and short-term variation in abiotic conditions on the abundance of juvenile bull sharks (Carcharhinus leucas) in an estuary of the Florida Everglades, U.S.A. Logistic regression revealed that young-of-the-year sharks were concentrated at a protected site 20 km upstream and were present in greater abundance when dissolved oxygen (DO) levels were high. For older juvenile sharks (age 1+), DO levels had the greatest influence on catch probabilities followed by distance from the ocean; they were most likely to be caught at sites with .3.5 mg L21 DO and on the main branch of the river 20 km upstream. Salinity had a relatively small effect on catch rates and there were no seasonal shifts in shark distribution. Our results highlight the importance of considering DO as a possible driver of top predator distributions in estuaries, even in the absence of hypoxia. In Everglades estuaries hydrological drivers that affect DO levels (e.g., groundwater discharge, modification of primary productivity through nutrient fluxes) will be important in determining shark distributions, and the effects of planned ecosystem restoration efforts on bull sharks will not simply be mediated by changing salinity regimes and the location of the oligohaline zone. More generally, variation in DO levels could structure the nature and spatiotemporal pattern of top predator effects in the coastal Everglades, and other tropical and subtropical estuaries, because of interspecific variation in reliance on DO within the top predator guild.