8 resultados para Trophic Structure

em Digital Commons at Florida International University


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Stable isotope analysis has emerged as one of the primary means for examining the structure and dynamics of food webs, and numerous analytical approaches are now commonly used in the field. Techniques range from simple, qualitative inferences based on the isotopic niche, to Bayesian mixing models that can be used to characterize food-web structure at multiple hierarchical levels. We provide a comprehensive review of these techniques, and thus a single reference source to help identify the most useful approaches to apply to a given data set. We structure the review around four general questions: (1) what is the trophic position of an organism in a food web?; (2) which resource pools support consumers?; (3) what additional information does relative position of consumers in isotopic space reveal about food-web structure?; and (4) what is the degree of trophic variability at the intrapopulation level? For each general question, we detail different approaches that have been applied, discussing the strengths and weaknesses of each. We conclude with a set of suggestions that transcend individual analytical approaches, and provide guidance for future applications in the field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We evaluated how changes in nutrient supply altered the composition of epiphytic and benthic microalgal communities in a Thalassia testudinum (turtle grass) bed in Florida Bay. We established study plots at four sites in the bay and added nitrogen (N) and phosphorus (P) to the sediments in a factorial design. After 18, 24, and 30 months of fertilization we measured the pigment concentrations in the epiphytic and benthic microalgal assemblages using high performance liquid chromatography. Overall, the epiphytic assemblage was P-limited in the eastern portion of the bay, but each phototrophic group displayed unique spatial and temporal responses to N and P addition. Epiphytic chlorophyll a, an indicator of total microalgal load, and epiphytic fucoxanthin, an indicator of diatoms, increased in response to P addition at one eastern bay site, decreased at another eastern bay site, and were not affected by P or N addition at two western bay sites. Epiphytic zeaxanthin, an indicator of the cyanobacteria/coralline red algae complex, and epiphytic chlorophyll b, an indicator of green algae, generally increased in response to P addition at both eastern bay sites but did not respond to P or N addition in the western bay. Benthic chlorophyll a, chlorophyll b, fucoxanthin, and zeaxanthin showed complex responses to N and P addition in the eastern bay, suggesting that the benthic assemblage is limited by both N and P. Benthic assemblages in the western bay were variable over time and displayed few responses to N or P addition. The contrasting nutrient limitation patterns between the epiphytic and benthic communities in the eastern bay suggest that altering nutrient input to the bay, as might occur during Everglades restoration, can shift microalgal community structure, which may subsequently alter food web support for upper trophic levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Complex links between the top-down and bottomup forces that structure communities can be disrupted by anthropogenic alterations of natural habitats.We used relative abundance and stable isotopes to examine changes in epifaunal food webs in seagrass (Thalassia testudinum) beds following 6 months of experimental nutrient addition at two sites in Florida Bay (USA) with different ambient fertility. At a eutrophic site, nutrient addition did not strongly affect food web structure, but at a nutrient-poor site, enrichment increased the abundances of crustacean epiphyte grazers, and the diets of these grazers became more varied. Benthic grazers did not change in abundance but shifted their diet away from green macroalgae + associated epiphytes and towards an opportunistic seagrass (Halodule wrightii) that occurred only in nutrient addition treatments. Benthic predators did not change in abundance, but their diets were more varied in enriched plots. Food chain length was short and unaffected by site or nutrient treatment, but increased food web complexity in enriched plots was suggested by increasingly mixed diets. Strong bottom-up modifications of food web structure in the nutrient-limited site and the limited top-down influences of grazers on seagrass epiphyte biomass suggest that, in this system, the bottom-up role of nutrient enrichment can have substantial impacts on community structure, trophic relationships, and, ultimately, the productivity values of the ecosystem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Food-web structure can shape population dynamics and ecosystem functioning and stability. We investigated the structure of a food-web fragment consisting of dominant intermediate consumers (fishes and crayfishes) in the Florida Everglades, using stable isotope analysis to quantify trophic diversity along gradients of primary production (periphyton), disturbance (marsh drying) and intermediate-consumer density (a possible indicator of competition). We predicted that trophic diversity would increase with resource availability and decrease after disturbance, and that competition could result in greater trophic diversity by favouring resource partitioning. Total trophic diversity, measured by niche area, decreased with periphyton biomass and an ordination axis representing several bluegreen algae species. Consumers’ basal resource diversity, estimated by δ13C values, was similarly related to algal community structure. The range of trophic levels (δ15N range) increased with time since the most recent drying and reflooding event, but decreased with intermediate-consumer density, and was positively related to the ordination axis reflecting increases in green algae and decreases in filamentous bluegreen algae. Our findings suggest that algal quality, independent of quantity, influences food-web structure and demonstrate an indirect role of nutrient enrichment mediated by its effects on periphyton palatability and biomass. These results reveal potential mechanisms for anthropogenic effects on Everglades communities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Models of community regulation commonly incorporate gradients of disturbance inversely related to the role of biotic interactions in regulating intermediate trophic levels. Higher trophic-level organisms are predicted to be more strongly limited by intermediate levels of disturbance than are the organisms they consume. We used a manipulation of the frequency of hydrological disturbance in an intervention analysis to examine its effects on small-fish communities in the Everglades, USA. From 1978 to 2002, we monitored fishes at one long-hydroperiod (average 350 days) and at one short-hydroperiod (average 259 days; monitoring started here in 1985) site. At a third site, managers intervened in 1985 to diminish the frequency and duration of marsh drying. By the late 1990s, the successional dynamics of density and relative abundance at the intervention site converged on those of the long-hydroperiod site. Community change was manifested over 3 to 5 years following a dry-down if a site remained inundated; the number of days since the most recent drying event and length of the preceding dry period were useful for predicting population dynamics. Community dissimilarity was positively correlated with the time since last dry. Community dynamics resulted from change in the relative abundance of three groups of species linked by life-history responses to drought. Drought frequency and intensity covaried in response to hydrological manipulation at the landscape scale; community-level successional dynamics converged on a relatively small range of species compositions when drought return-time extended beyond 4 years. The density of small fishes increased with diminution of drought frequency, consistent with disturbance-limited community structure; less-frequent drying than experienced in this study (i.e., longer return times) yields predator-dominated regulation of small-fish communities in some parts of the Everglades.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. The roles of nutrients, disturbance and predation in regulating consumer densities have long been of interest, but their indirect effects have rarely been quantified in wetland ecosystems. The Florida Everglades contains gradients of hydrological disturbance (marsh drying) and nutrient enrichment (phosphorus), often correlated with densities of macroinvertebrate infauna (macroinvertebrates inhabiting periphyton), small fish and larger invertebrates, such as snails, grass shrimp, insects and crayfish. However, most causal relationships have yet to be quantified. 2.  We sampled periphyton (content and community structure) and consumer (small omnivores, carnivores and herbivores, and infaunal macroinvertebrates inhabiting periphyton) density at 28 sites spanning a range of hydrological and nutrient conditions and compared our data to seven a priori structural equation models. 3.  The best model included bottom-up and top-down effects among trophic groups and supported top-down control of infauna by omnivores and predators that cascaded to periphyton biomass. The next best model included bottom-up paths only and allowed direct effects of periphyton on omnivore density. Both models suggested a positive relationship between small herbivores and small omnivores, indicating that predation was unable to limit herbivore numbers. Total effects of time following flooding were negative for all three consumer groups even when both preferred models suggested positive direct effects for some groups. Total effects of nutrient levels (phosphorus) were positive for consumers and generally larger than those of hydrological disturbance and were mediated by changes in periphyton content. 4.  Our findings provide quantitative support for indirect effects of nutrient enrichment on consumers, and the importance of both algal community structure and periphyton biomass to Everglades food webs. Evidence for top-down control of infauna by omnivores was noted, though without substantially greater support than a competing bottom-up-only model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The frequency of extreme environmental events is predicted to increase in the future. Understanding the short- and long-term impacts of these extreme events on large-bodied predators will provide insight into the spatial and temporal scales at which acute environmental disturbances in top-down processes may persist within and across ecosystems. Here, we use long-term studies of movements and age structure of an estuarine top predator—juvenile bull sharks Carcharhinus leucas—to identify the effects of an extreme ‘cold snap’ from 2 to 13 January 2010 over short (weeks) to intermediate (months) time scales. Juvenile bull sharks are typically year-round residents of the Shark River Estuary until they reach 3 to 5 yr of age. However, acoustic telemetry revealed that almost all sharks either permanently left the system or died during the cold snap. For 116 d after the cold snap, no sharks were detected in the system with telemetry or captured during longline sampling. Once sharks returned, both the size structure and abundance of the individuals present in the nursery had changed considerably. During 2010, individual longlines were 70% less likely to capture any sharks, and catch rates on successful longlines were 40% lower than during 2006−2009. Also, all sharks caught after the cold snap were young-of-the-year or neonates, suggesting that the majority of sharks in the estuary were new recruits and several cohorts had been largely lost from the nursery. The longer-term impacts of this change in bull shark abundance to the trophic dynamics of the estuary and the importance of episodic disturbances to bull shark population dynamics will require continued monitoring, but are of considerable interest because of the ecological roles of bull sharks within coastal estuaries and oceans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Predation, predation risk, and resource quality affect suites of prey traits that collectively impact individual fitness, population dynamics, and community structure. However, studies of multi-trophic level effects generally focus on a single prey trait, failing to capture trade-offs among suites of covarying traits that govern population responses and emergent community patterns. We used structural equation models (SEM) to summarize the non-lethal and lethal effects of crayfish, Procambarus fallax, and phosphorus (P) addition, which affected prey food quality (periphyton), on the interactive effects of behavioral, morphological, developmental, and reproductive traits of snails, Planorbella duryi. Univariate and multivariate analyses suggested trade-offs between production (growth, reproduction) and defense (foraging behavior, shell shape) traits of snails in response to non-lethal crayfish and P addition, but few lethal effects. SEM revealed that non-lethal crayfish effects indirectly limited per capita offspring standing stock by increasing refuge use, slowing individual growth, and inducing snails to produce thicker, compressed shells. The negative effects of non-lethal crayfish on snails were strongest with P addition; snails increased allocation to shell defense rather than growth or reproduction. However, compared to ambient conditions, P addition with non-lethal crayfish still yielded greater per capita offspring standing stock by speeding individual snail growth enabling them to produce more offspring that also grew faster. Increased refuge use in response to non-lethal crayfish led to a non-lethal trophic cascade that altered the spatial distribution of periphyton. Independent of crayfish effects, snails stimulated periphyton growth through nutrient regeneration. These findings illustrate the importance of studying suites of traits that reveal costs associated with inducing different traits and how expressing those traits impacts population and community level processes.