2 resultados para Tribology
em Digital Commons at Florida International University
Resumo:
The purpose of this thesis was to compare graphene nanoplatelets (GNP) and WS2 as solid lubricant additives to aluminum in order to reduce friction and wear. The central hypothesis of this work relied on lubricating properties of 2D materials, which consist layers that slip under a shear force. Two aluminum composites were made (Al-2 vol.% GNP and Al-2 vol.% WS2) by spark plasma sintering. Tribological properties were evaluated by ball-on-disk wear tests at room temperature (RT) and 200°C. WS2 not only presented the lowest COF (0.66) but also improved the wear resistance of aluminum by 54% at RT. Al-2 vol.% GNP composite displayed poor densification (91%) and low hardness resulting in poor wear resistance. The wear rate of Al-2 vol.% GNP composite increased by 233% at RT and 48% at 200°C as compared to pure aluminum. GNP addition also resulted in lower COF (0.79) as compared to pure aluminum (0.87).
Resumo:
The purpose of this study was to evaluate the incidence of corrosion and fretting in 48 retrieved titanium-6aluminum-4vanadium and/or cobalt-chromium-molybdenum modular total hip prosthesis with respect to alloy material microstructure and design parameters. The results revealed vastly different performance results for the wide array of microstructures examined. Severe corrosion/fretting was seen in 100% of as-cast, 24% of low carbon wrought, 9% of high carbon wrought and 5% of solution heat treated cobalt-chrome. Severe corrosion/fretting was observed in 60% of Ti-6Al-4V components. Design features which allow for fluid entry and stagnation, amplification of contact pressure and/or increased micromotion were also shown to play a role. 75% of prosthesis with high femoral head-trunnion offset exhibited poor performance compared to 15% with a low offset. Large femoral heads (>32mm) did not exhibit poor corrosion or fretting. Implantation time was not sufficient to cause poor performance; 54% of prosthesis with greater than 10 years in-vivo demonstrated none or mild corrosion/fretting.