15 resultados para Tree based intercrop systems
em Digital Commons at Florida International University
Resumo:
The nation's freeway systems are becoming increasingly congested. A major contribution to traffic congestion on freeways is due to traffic incidents. Traffic incidents are non-recurring events such as accidents or stranded vehicles that cause a temporary roadway capacity reduction, and they can account for as much as 60 percent of all traffic congestion on freeways. One major freeway incident management strategy involves diverting traffic to avoid incident locations by relaying timely information through Intelligent Transportation Systems (ITS) devices such as dynamic message signs or real-time traveler information systems. The decision to divert traffic depends foremost on the expected duration of an incident, which is difficult to predict. In addition, the duration of an incident is affected by many contributing factors. Determining and understanding these factors can help the process of identifying and developing better strategies to reduce incident durations and alleviate traffic congestion. A number of research studies have attempted to develop models to predict incident durations, yet with limited success. ^ This dissertation research attempts to improve on this previous effort by applying data mining techniques to a comprehensive incident database maintained by the District 4 ITS Office of the Florida Department of Transportation (FDOT). Two categories of incident duration prediction models were developed: "offline" models designed for use in the performance evaluation of incident management programs, and "online" models for real-time prediction of incident duration to aid in the decision making of traffic diversion in the event of an ongoing incident. Multiple data mining analysis techniques were applied and evaluated in the research. The multiple linear regression analysis and decision tree based method were applied to develop the offline models, and the rule-based method and a tree algorithm called M5P were used to develop the online models. ^ The results show that the models in general can achieve high prediction accuracy within acceptable time intervals of the actual durations. The research also identifies some new contributing factors that have not been examined in past studies. As part of the research effort, software code was developed to implement the models in the existing software system of District 4 FDOT for actual applications. ^
Resumo:
This dissertation analyzes recent financial crises in developed and developing countries. The research emphasizes the effects of institutional factors on the international banking and currency crises and their output losses. ^ Chapter two examines the roles of regulation, supervision, and countries' institutional environment in determining the probability of banking crises for a panel of fifteen developed countries from 1975 to 1998. The results from a multivariate logit model indicated that countries with greater government involvement, less capital standard requirements, and lower lending limits on a single borrower are associated with a higher probability of banking crises. ^ Chapter three studies whether output loss in banking crisis differs in market-based or bank-based financial systems. Using existing banking crisis data for sixty-nine countries during 1970–1999, we investigate whether the underlying financial system affects the output loss. The results show that output losses are more serious in market-based economies than those in bank-based economies. Longer crisis duration tends to increase the output losses in banking crises. Finally, countries with deposit insurance and strict law enforcement have less output losses. ^ Chapter four uses macroeconomic and institutional measures to explain the extent of exchange rate depreciation and the decline in stock prices for emerging countries affected by the Mexican currency crisis of 1994–95. The results show that countries with more government budget deficits, and worse reserve adequacies tend to experience large exchange rate depreciation. The institutional measures do not explain much the extent of both the exchange rate depreciation and the decline in stock prices. ^
Resumo:
Various nondestructive testing (NDT) technologies for construction and performance monitoring have been studied for decades. Recently, the rapid evolution of wireless sensor network (WSN) technologies has enabled the development of sensors that can be embedded in concrete to monitor the structural health of infrastructure. Such sensors can be buried inside concrete and they can collect and report valuable volumetric data related to the health of a structure during and/or after construction. Wireless embedded sensors monitoring system is also a promising solution for decreasing the high installation and maintenance cost of the conventional wire based monitoring systems. Wireless monitoring sensors need to operate for long time. However, sensor batteries have finite life-time. Therefore, in order to enable long operational life of wireless sensors, novel wireless powering methods, which can charge the sensors’ rechargeable batteries wirelessly, need to be developed. The optimization of RF wireless powering of sensors embedded in concrete is studied here. First, our analytical results focus on calculating the transmission loss and propagation loss of electromagnetic waves penetrating into plain concrete at different humidity conditions for various frequencies. This analysis specifically leads to the identification of an optimum frequency range within 20–80 MHz that is validated through full-wave electromagnetic simulations. Second, the effects of various reinforced bar configurations on the efficiency of wireless powering are investigated. Specifically, effects of the following factors are studied: rebar types, rebar period, rebar radius, depth inside concrete, and offset placement. This analysis leads to the identification of the 902–928 MHz ISM band as the optimum power transmission frequency range for sensors embedded in reinforced concrete, since antennas working in this band are less sensitive to the effects of varying humidity as well as rebar configurations. Finally, optimized rectennas are designed for receiving and/or harvesting power in order to charge the rechargeable batteries of the embedded sensors. Such optimized wireless powering systems exhibit significantly larger efficiencies than the efficiencies of conventional RF wireless powering systems for sensors embedded in plain or reinforced concrete.
Resumo:
The extensive impact and consequences of the 2010 Deep Water Horizon oil drilling rig failure in the Gulf of Mexico, together with expanding drilling activities in the Cuban Exclusive Economic zone, have cast a spotlight on Cuban oil development. The threat of a drilling rig failure has evolved from being only hypothetical to a potential reality with the commencement of active drilling in Cuban waters. The disastrous consequences of a drilling rig failure in Cuban waters will spread over a number of vital interests of the US and of nations in the Caribbean in the general environs of Cuba. The US fishing and tourist industries will take major blows from a significant oil spill in Cuban waters. Substantial ecological damage and damage to beaches could occur for the US, Mexico, Haiti and other countries as well. The need exists for the US to have the ability to independently monitor the reality of Cuban oceanic oil development. The advantages of having an independent US early warning system providing essential real-time data on the possible failure of a drilling rig in Cuban waters are numerous. An ideal early warning system would timely inform the US that an event has occurred or is likely to occur in, essentially, real-time. Presently operating monitoring systems that could provide early warning information are satellite-based. Such systems can indicate the locations of both drilling rigs and operational drilling platforms. The system discussed/proposed in this paper relies upon low-frequency underwater sound. The proposed system can complement existing monitoring systems, which offer ocean-surface information, by providing sub-ocean surface, near-real time, information. This “integrated system” utilizes and combines (integrates) many different forms of information, some gathered through sub-ocean surface systems, and some through electromagnetic-based remote sensing (satellites, aircraft, unmanned arial vehicles), and other methods as well. Although the proposed integrated system is in the developmental stage, it is based upon well-established technologies.
Resumo:
Introduction: In this study, quasi-three-dimensional (3D) microwell patterns were fabricated with poly (l-lactic acid) for the development of cell-based assays, targeting voltage-gated calcium channels (VGCCs). Methods and materials: SH-SY5Y human neuroblastoma cells were interfaced with the microwell patterns and found to grow as two dimensional (2D), 3D, and near two dimensional (N2D), categorized on the basis of the cells’ location in the pattern. The capability of the microwell patterns to support 3D cell growth was evaluated in terms of the percentage of the cells in each growth category. Cell spreading was analyzed in terms of projection areas under light microscopy. SH-SY5Y cells’ VGCC responsiveness was evaluated with confocal microscopy and a calcium fluorescent indicator, Calcium GreenTM-1. The expression of L-type calcium channels was evaluated using immunofluorescence staining with DM-BODIPY. Results: It was found that cells within the microwells, either N2D or 3D, showed more rounded shapes and less projection areas than 2D cells on flat poly (l-lactic acid) substrates. Also, cells in microwells showed a significantly lower VGCC responsiveness than cells on flat substrates, in terms of both response magnitudes and percentages of responsive cells, upon depolarization with 50 mM K+. This lower VGCC responsiveness could not be explained by the difference in L-type calcium channel expression. For the two patterns addressed in this study, N2D cells consistently exhibited an intermediate value of either projection areas or VGCC responsiveness between those for 2D and 3D cells, suggesting a correlative relation between cell morphology and VGCC responsiveness. Conclusion: These results suggest that the pattern structure and therefore the cell growth characteristics were critical factors in determining cell VGCC responsiveness and thus provide an approach for engineering cell functionality in cell-based assay systems and tissue engineering scaffolds.
Resumo:
The advent of smart TVs has reshaped the TV-consumer interaction by combining TVs with mobile-like applications and access to the Internet. However, consumers are still unable to seamlessly interact with the contents being streamed. An example of such limitation is TV shopping, in which a consumer makes a purchase of a product or item displayed in the current TV show. Currently, consumers can only stop the current show and attempt to find a similar item in the Web or an actual store. It would be more convenient if the consumer could interact with the TV to purchase interesting items. ^ Towards the realization of TV shopping, this dissertation proposes a scalable multimedia content processing framework. Two main challenges in TV shopping are addressed: the efficient detection of products in the content stream, and the retrieval of similar products given a consumer-selected product. The proposed framework consists of three components. The first component performs computational and temporal aware multimedia abstraction to select a reduced number of frames that summarize the important information in the video stream. By both reducing the number of frames and taking into account the computational cost of the subsequent detection phase, this component component allows the efficient detection of products in the stream. The second component realizes the detection phase. It executes scalable product detection using multi-cue optimization. Additional information cues are formulated into an optimization problem that allows the detection of complex products, i.e., those that do not have a rigid form and can appear in various poses. After the second component identifies products in the video stream, the consumer can select an interesting one for which similar ones must be located in a product database. To this end, the third component of the framework consists of an efficient, multi-dimensional, tree-based indexing method for multimedia databases. The proposed index mechanism serves as the backbone of the search. Moreover, it is able to efficiently bridge the semantic gap and perception subjectivity issues during the retrieval process to provide more relevant results.^
Resumo:
Choosing between Light Rail Transit (LRT) and Bus Rapid Transit (BRT) systems is often controversial and not an easy task for transportation planners who are contemplating the upgrade of their public transportation services. These two transit systems provide comparable services for medium-sized cities from the suburban neighborhood to the Central Business District (CBD) and utilize similar right-of-way (ROW) categories. The research is aimed at developing a method to assist transportation planners and decision makers in determining the most feasible system between LRT and BRT. ^ Cost estimation is a major factor when evaluating a transit system. Typically, LRT is more expensive to build and implement than BRT, but has significantly lower Operating and Maintenance (OM) costs than BRT. This dissertation examines the factors impacting capacity and costs, and develops cost models, which are a capacity-based cost estimate for the LRT and BRT systems. Various ROW categories and alignment configurations of the systems are also considered in the developed cost models. Kikuchi's fleet size model (1985) and cost allocation method are used to develop the cost models to estimate the capacity and costs. ^ The comparison between LRT and BRT are complicated due to many possible transportation planning and operation scenarios. In the end, a user-friendly computer interface integrated with the established capacity-based cost models, the LRT and BRT Cost Estimator (LBCostor), was developed by using Microsoft Visual Basic language to facilitate the process and will guide the users throughout the comparison operations. The cost models and the LBCostor can be used to analyze transit volumes, alignments, ROW configurations, number of stops and stations, headway, size of vehicle, and traffic signal timing at the intersections. The planners can make the necessary changes and adjustments depending on their operating practices. ^
Resumo:
Recently, wireless network technology has grown at such a pace that scientific research has become a practical reality in a very short time span. Mobile wireless communications have witnessed the adoption of several generations, each of them complementing and improving the former. One mobile system that features high data rates and open network architecture is 4G. Currently, the research community and industry, in the field of wireless networks, are working on possible choices for solutions in the 4G system. 4G is a collection of technologies and standards that will allow a range of ubiquitous computing and wireless communication architectures. The researcher considers one of the most important characteristics of future 4G mobile systems the ability to guarantee reliable communications from 100 Mbps, in high mobility links, to as high as 1 Gbps for low mobility users, in addition to high efficiency in the spectrum usage. On mobile wireless communications networks, one important factor is the coverage of large geographical areas. In 4G systems, a hybrid satellite/terrestrial network is crucial to providing users with coverage wherever needed. Subscribers thus require a reliable satellite link to access their services when they are in remote locations, where a terrestrial infrastructure is unavailable. Thus, they must rely upon satellite coverage. Good modulation and access technique are also required in order to transmit high data rates over satellite links to mobile users. This technique must adapt to the characteristics of the satellite channel and also be efficient in the use of allocated bandwidth. Satellite links are fading channels, when used by mobile users. Some measures designed to approach these fading environments make use of: (1) spatial diversity (two receive antenna configuration); (2) time diversity (channel interleaver/spreading techniques); and (3) upper layer FEC. The author proposes the use of OFDM (Orthogonal Frequency Multiple Access) for the satellite link by increasing the time diversity. This technique will allow for an increase of the data rate, as primarily required by multimedia applications, and will also optimally use the available bandwidth. In addition, this dissertation approaches the use of Cooperative Satellite Communications for hybrid satellite/terrestrial networks. By using this technique, the satellite coverage can be extended to areas where there is no direct link to the satellite. For this purpose, a good channel model is necessary.
Resumo:
In the current age of fast-depleting conventional energy sources, top priority is given to exploring non-conventional energy sources, designing highly efficient energy storage systems and converting existing machines/instruments/devices into energy-efficient ones. ‘Energy efficiency’ is one of the important challenges for today’s scientific and research community, worldwide. In line with this demand, the current research was focused on developing two highly energy-efficient devices – field emitters and Li-ion batteries, using beneficial properties of carbon nanotubes (CNT). Interface-engineered, directly grown CNTs were used as cathode in field emitters, while similar structure was applied as anode in Li-ion batteries. Interface engineering was found to offer minimum resistance to electron flow and strong bonding with the substrate. Both field emitters and Li-ion battery anodes were benefitted from these advantages, demonstrating high energy efficiency. Field emitter, developed during this research, could be characterized by low turn-on field, high emission current, very high field enhancement factor and extremely good stability during long-run. Further, application of 3-dimensional design to these field emitters resulted in achieving one of the highest emission current densities reported so far. The 3-D field emitter registered 27 times increase in current density, as compared to their 2-D counterparts. These achievements were further followed by adding new functionalities, transparency and flexibility, to field emitters, keeping in view of current demand for flexible displays. A CNT-graphene hybrid structure showed appreciable emission, along with very good transparency and flexibility. Li-ion battery anodes, prepared using the interface-engineered CNTs, have offered 140% increment in capacity, as compared to conventional graphite anodes. Further, it has shown very good rate capability and an exceptional ‘zero capacity degradation’ during long cycle operation. Enhanced safety and charge transfer mechanism of this novel anode structure could be explained from structural characterization. In an attempt to progress further, CNTs were coated with ultrathin alumina by atomic layer deposition technique. These alumina-coated CNT anodes offered much higher capacity and an exceptional rate capability, with very low capacity degradation in higher current densities. These highly energy efficient CNT based anodes are expected to enhance capacities of future Li-ion batteries.
Resumo:
High efficiency of power converters placed between renewable energy sources and the utility grid is required to maximize the utilization of these sources. Power quality is another aspect that requires large passive elements (inductors, capacitors) to be placed between these sources and the grid. The main objective is to develop higher-level high frequency-based power converter system (HFPCS) that optimizes the use of hybrid renewable power injected into the power grid. The HFPCS provides high efficiency, reduced size of passive components, higher levels of power density realization, lower harmonic distortion, higher reliability, and lower cost. The dynamic modeling for each part in this system is developed, simulated and tested. The steady-state performance of the grid-connected hybrid power system with battery storage is analyzed. Various types of simulations were performed and a number of algorithms were developed and tested to verify the effectiveness of the power conversion topologies. A modified hysteresis-control strategy for the rectifier and the battery charging/discharging system was developed and implemented. A voltage oriented control (VOC) scheme was developed to control the energy injected into the grid. The developed HFPCS was compared experimentally with other currently available power converters. The developed HFPCS was employed inside a microgrid system infrastructure, connecting it to the power grid to verify its power transfer capabilities and grid connectivity. Grid connectivity tests verified these power transfer capabilities of the developed converter in addition to its ability of serving the load in a shared manner. In order to investigate the performance of the developed system, an experimental setup for the HF-based hybrid generation system was constructed. We designed a board containing a digital signal processor chip on which the developed control system was embedded. The board was fabricated and experimentally tested. The system's high precision requirements were verified. Each component of the system was built and tested separately, and then the whole system was connected and tested. The simulation and experimental results confirm the effectiveness of the developed converter system for grid-connected hybrid renewable energy systems as well as for hybrid electric vehicles and other industrial applications.
Resumo:
The move from Standard Definition (SD) to High Definition (HD) represents a six times increases in data, which needs to be processed. With expanding resolutions and evolving compression, there is a need for high performance with flexible architectures to allow for quick upgrade ability. The technology advances in image display resolutions, advanced compression techniques, and video intelligence. Software implementation of these systems can attain accuracy with tradeoffs among processing performance (to achieve specified frame rates, working on large image data sets), power and cost constraints. There is a need for new architectures to be in pace with the fast innovations in video and imaging. It contains dedicated hardware implementation of the pixel and frame rate processes on Field Programmable Gate Array (FPGA) to achieve the real-time performance. ^ The following outlines the contributions of the dissertation. (1) We develop a target detection system by applying a novel running average mean threshold (RAMT) approach to globalize the threshold required for background subtraction. This approach adapts the threshold automatically to different environments (indoor and outdoor) and different targets (humans and vehicles). For low power consumption and better performance, we design the complete system on FPGA. (2) We introduce a safe distance factor and develop an algorithm for occlusion occurrence detection during target tracking. A novel mean-threshold is calculated by motion-position analysis. (3) A new strategy for gesture recognition is developed using Combinational Neural Networks (CNN) based on a tree structure. Analysis of the method is done on American Sign Language (ASL) gestures. We introduce novel point of interests approach to reduce the feature vector size and gradient threshold approach for accurate classification. (4) We design a gesture recognition system using a hardware/ software co-simulation neural network for high speed and low memory storage requirements provided by the FPGA. We develop an innovative maximum distant algorithm which uses only 0.39% of the image as the feature vector to train and test the system design. Database set gestures involved in different applications may vary. Therefore, it is highly essential to keep the feature vector as low as possible while maintaining the same accuracy and performance^
Resumo:
The main objective for physics based modeling of the power converter components is to design the whole converter with respect to physical and operational constraints. Therefore, all the elements and components of the energy conversion system are modeled numerically and combined together to achieve the whole system behavioral model. Previously proposed high frequency (HF) models of power converters are based on circuit models that are only related to the parasitic inner parameters of the power devices and the connections between the components. This dissertation aims to obtain appropriate physics-based models for power conversion systems, which not only can represent the steady state behavior of the components, but also can predict their high frequency characteristics. The developed physics-based model would represent the physical device with a high level of accuracy in predicting its operating condition. The proposed physics-based model enables us to accurately develop components such as; effective EMI filters, switching algorithms and circuit topologies [7]. One of the applications of the developed modeling technique is design of new sets of topologies for high-frequency, high efficiency converters for variable speed drives. The main advantage of the modeling method, presented in this dissertation, is the practical design of an inverter for high power applications with the ability to overcome the blocking voltage limitations of available power semiconductor devices. Another advantage is selection of the best matching topology with inherent reduction of switching losses which can be utilized to improve the overall efficiency. The physics-based modeling approach, in this dissertation, makes it possible to design any power electronic conversion system to meet electromagnetic standards and design constraints. This includes physical characteristics such as; decreasing the size and weight of the package, optimized interactions with the neighboring components and higher power density. In addition, the electromagnetic behaviors and signatures can be evaluated including the study of conducted and radiated EMI interactions in addition to the design of attenuation measures and enclosures.
Resumo:
One of the most popular techniques for creating spatialized virtual sounds is based on the use of Head-Related Transfer Functions (HRTFs). HRTFs are signal processing models that represent the modifications undergone by the acoustic signal as it travels from a sound source to each of the listener's eardrums. These modifications are due to the interaction of the acoustic waves with the listener's torso, shoulders, head and pinnae, or outer ears. As such, HRTFs are somewhat different for each listener. For a listener to perceive synthesized 3-D sound cues correctly, the synthesized cues must be similar to the listener's own HRTFs. ^ One can measure individual HRTFs using specialized recording systems, however, these systems are prohibitively expensive and restrict the portability of the 3-D sound system. HRTF-based systems also face several computational challenges. This dissertation presents an alternative method for the synthesis of binaural spatialized sounds. The sound entering the pinna undergoes several reflective, diffractive and resonant phenomena, which determine the HRTF. Using signal processing tools, such as Prony's signal modeling method, an appropriate set of time delays and a resonant frequency were used to approximate the measured Head-Related Impulse Responses (HRIRs). Statistical analysis was used to find out empirical equations describing how the reflections and resonances are determined by the shape and size of the pinna features obtained from 3D images of 15 experimental subjects modeled in the project. These equations were used to yield “Model HRTFs” that can create elevation effects. ^ Listening tests conducted on 10 subjects show that these model HRTFs are 5% more effective than generic HRTFs when it comes to localizing sounds in the frontal plane. The number of reversals (perception of sound source above the horizontal plane when actually it is below the plane and vice versa) was also reduced by 5.7%, showing the perceptual effectiveness of this approach. The model is simple, yet versatile because it relies on easy to measure parameters to create an individualized HRTF. This low-order parameterized model also reduces the computational and storage demands, while maintaining a sufficient number of perceptually relevant spectral cues. ^
Resumo:
Recently, wireless network technology has grown at such a pace that scientific research has become a practical reality in a very short time span. One mobile system that features high data rates and open network architecture is 4G. Currently, the research community and industry, in the field of wireless networks, are working on possible choices for solutions in the 4G system. The researcher considers one of the most important characteristics of future 4G mobile systems the ability to guarantee reliable communications at high data rates, in addition to high efficiency in the spectrum usage. On mobile wireless communication networks, one important factor is the coverage of large geographical areas. In 4G systems, a hybrid satellite/terrestrial network is crucial to providing users with coverage wherever needed. Subscribers thus require a reliable satellite link to access their services when they are in remote locations where a terrestrial infrastructure is unavailable. The results show that good modulation and access technique are also required in order to transmit high data rates over satellite links to mobile users. The dissertation proposes the use of OFDM (Orthogonal Frequency Multiple Access) for the satellite link by increasing the time diversity. This technique will allow for an increase of the data rate, as primarily required by multimedia applications, and will also optimally use the available bandwidth. In addition, this dissertation approaches the use of Cooperative Satellite Communications for hybrid satellite/terrestrial networks. By using this technique, the satellite coverage can be extended to areas where there is no direct link to the satellite. The issue of Cooperative Satellite Communications is solved through a new algorithm that forwards the received data from the fixed node to the mobile node. This algorithm is very efficient because it does not allow unnecessary transmissions and is based on signal to noise ratio (SNR) measures.
Resumo:
Adaptation is an important requirement for mobile applications due to the varying levels of resource availability that characterizes mobile environments. However without proper control, multiple applications can each adapt independently in response to a range of different adaptive stimuli, causing conflicts or sub optimal performance. In this thesis we presented a framework, which enables multiple adaptation mechanisms to coexist on one platform. The key component of this framework was the 'Policy Server', which has all the system policies and governs the rules for adaptation. We also simulated our framework and subjected it to various adaptation scenarios to demonstrate the working of the system as a whole. With the help of the simulation it was shown that our framework enables seamless adaptation of multiple applications.