3 resultados para Transposon

em Digital Commons at Florida International University


Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the increased antibiotic exposure from anthropogenic sources, soil microbes are an ever-increasing ecological pool of resistant bacteria. This is the case with bacterial resistance to vancomycin through transfer of van-resistance genes by transposons. Studies show that bacterial species other than enteroccoci harbor genetic-like elements such as the Tn1546 transposon containing vancomycin-resistant genes. Overuse and misuse of antibiotics in hospital settings and agricultural practices have led to an increase in transferability of vancomycin-resistant genes among microbes. The objective of this project is to analyze the diversity of these genes found in the soil microbes from Miami-Dade County. Bacterial isolates were Gram-stained and the Kirby-Bauer antibiotic disk diffusion test was performed to determine the degree of resistance. Results showed that all bacterial isolates were resistant to penicillin at the 10 µg concentration and most were susceptible to varying vancomycin concentrations (10 µg, 20 µg, and 30 µg). A 1465 bp fragment was amplified from the 16S rDNA gene using 27F and 1492R universal primers from the multi-antibiotic resistant bacteria and sequenced to identify the isolates. Three Gram-negative bacteria genera were identified with the closest phylogenetic match to: Pseudomonas sp., Stenotrophomonas sp., Xanthomonas sp., as well as two Gram-positive bacteria genera: Bacillus sp. and Brevibacillus sp. The isolates’ vanA and vanB genes were amplified using the respective primers. Ongoing work is underway to sequence and compare these known van resistant genes, with the goal of revealing intrinsic vancomycin resistance present in soil bacteria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pseudomonas aeruginosa is a dreaded opportunistic pathogen that causes severe and often intractable infections in immunocompromised and critically ill patients. This bacterium is also the primary cause of fatal lung infections in patients with cystic fibrosis and a leading nosocomial pathogen responsible for nearly 10% of all hospital-acquired infections. P. aeruginosa is intrinsically recalcitrant to most classes of antibiotics and has the ability to acquire additional resistance during treatment. In particular, resistance to the widely used β-lactam antibiotics is frequently mediated by the expression of AmpC, a chromosomally encoded β-lactamase that is ubiquitously found in P. aeruginosa strains. This dissertation delved into the role of a recently reported chromosomal β-lactamase in P. aeruginosa called PoxB. To date, no detailed studies have addressed the regulation of poxB expression and its contribution to β-lactam resistance in P. aeruginosa. In an effort to better understand the role of this β-lactamase, poxB was deleted from the chromosome and expressed in trans from an IPTG-inducible promoter. The loss of poxB did not affect susceptibility. However, expression in trans in the absence of ampC rendered strains more resistant to the carbapenem β-lactams. The carbapenem-hydrolyzing phenotype was enhanced, reaching intermediate and resistant clinical breakpoints, in the absence of the carbapenem-specific outer membrane porin OprD. As observed for most class D β-lactamases, PoxB was only weakly inhibited by the currently available β-lactamase inhibitors. Moreover, poxB was shown to form an operon with the upstream located poxA, whose expression in trans decreased pox promoter (Ppox) activity suggesting autoregulation. The transcriptional regulator AmpR negatively controlled Ppox activity, however no direct interaction could be demonstrated. A mariner transposon library identified genes involved in the transport of polyamines as potential regulators of pox expression. Unexpectedly, polyamines themselves were able induce resistance to carbapenems. In summary, P. aeruginosa carries a chromosomal-encoded β-lactamase PoxB that can provide resistance against the clinically relevant carbapenems despite its narrow spectrum of hydrolysis and whose activity in vivo may be regulated by polyamines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pseudomonas aeruginosa is a dreaded opportunistic pathogen that causes severe and often intractable infections in immunocompromised and critically ill patients. This bacterium is also the primary cause of fatal lung infections in patients with cystic fibrosis and a leading nosocomial pathogen responsible for nearly 10% of all hospital-acquired infections. P. aeruginosa is intrinsically recalcitrant to most classes of antibiotics and has the ability to acquire additional resistance during treatment. In particular, resistance to the widely used β-lactam antibiotics is frequently mediated by the expression of AmpC, a chromosomally encoded β-lactamase that is ubiquitously found in P. aeruginosa strains. This dissertation delved into the role of a recently reported chromosomal β-lactamase in P. aeruginosa called PoxB. To date, no detailed studies have addressed the regulation of poxB expression and its contribution to β-lactam resistance in P. aeruginosa. In an effort to better understand the role of this β-lactamase, poxB was deleted from the chromosome and expressed in trans from an IPTG-inducible promoter. The loss of poxB did not affect susceptibility. However, expression in trans in the absence of ampC rendered strains more resistant to the carbapenem β-lactams. The carbapenem-hydrolyzing phenotype was enhanced, reaching intermediate and resistant clinical breakpoints, in the absence of the carbapenem-specific outer membrane porin OprD. As observed for most class D β-lactamases, PoxB was only weakly inhibited by the currently available β-lactamase inhibitors. Moreover, poxB was shown to form an operon with the upstream located poxA, whose expression in trans decreased pox promoter (Ppox) activity suggesting autoregulation. The transcriptional regulator AmpR negatively controlled Ppox activity, however no direct interaction could be demonstrated. A mariner transposon library identified genes involved in the transport of polyamines as potential regulators of pox expression. Unexpectedly, polyamines themselves were able induce resistance to carbapenems. In summary, P. aeruginosa carries a chromosomal-encoded β-lactamase PoxB that can provide resistance against the clinically relevant carbapenems despite its narrow spectrum of hydrolysis and whose activity in vivo may be regulated by polyamines.^