16 resultados para Transport Construction Project
em Digital Commons at Florida International University
Resumo:
Integrated project delivery (IPD) method has recently emerged as an alternative to traditional delivery methods. It has the potential to overcome inefficiencies of traditional delivery methods by enhancing collaboration among project participants. Information and communication technology (ICT) facilitates IPD by effective management, processing and communication of information within and among organizations. While the benefits of IPD, and the role of ICT in realizing them, have been generally acknowledged, the US public construction sector is very slow in adopting IPD. The reasons are - lack of experience and inadequate understanding of IPD in public owner as confirmed by the results of the questionnaire survey conducted under this research study. The public construction sector should be aware of the value of IPD and should know the essentials for effective implementation of IPD principles - especially, they should be cognizant of the opportunities offered by advancements in ICT to realize this.^ In order to address the need an IPD Readiness Assessment Model (IPD-RAM) was developed in this research study. The model was designed with a goal to determine IPD readiness of a public owner organization considering selected IPD principles, and ICT levels, at which project functions were carried out. Subsequent analysis led to identification of possible improvements in ICTs that have the potential to increase IPD readiness scores. Termed as the gap identification, this process was used to formulate improvement strategies. The model had been applied to six Florida International University (FIU) construction projects (case studies). The results showed that the IPD readiness of the organization was considerably low and several project functions can be improved by using higher and/or advanced level ICT tools and methods. Feedbacks from a focus group comprised of FIU officials and an independent group of experts had been received at various stages of this research and had been utilized during development and implementation of the model. Focus group input was also helpful for validation of the model and its results. It was hoped that the model developed would be useful to construction owner organizations in order to assess their IPD readiness and to identify appropriate ICT improvement strategies.^
Resumo:
Integrated project delivery (IPD) method has recently emerged as an alternative to traditional delivery methods. It has the potential to overcome inefficiencies of traditional delivery methods by enhancing collaboration among project participants. Information and communication technology (ICT) facilitates IPD by effective management, processing and communication of information within and among organizations. While the benefits of IPD, and the role of ICT in realizing them, have been generally acknowledged, the US public construction sector is very slow in adopting IPD. The reasons are - lack of experience and inadequate understanding of IPD in public owner as confirmed by the results of the questionnaire survey conducted under this research study. The public construction sector should be aware of the value of IPD and should know the essentials for effective implementation of IPD principles - especially, they should be cognizant of the opportunities offered by advancements in ICT to realize this. In order to address the need an IPD Readiness Assessment Model (IPD-RAM) was developed in this research study. The model was designed with a goal to determine IPD readiness of a public owner organization considering selected IPD principles, and ICT levels, at which project functions were carried out. Subsequent analysis led to identification of possible improvements in ICTs that have the potential to increase IPD readiness scores. Termed as the gap identification, this process was used to formulate improvement strategies. The model had been applied to six Florida International University (FIU) construction projects (case studies). The results showed that the IPD readiness of the organization was considerably low and several project functions can be improved by using higher and/or advanced level ICT tools and methods. Feedbacks from a focus group comprised of FIU officials and an independent group of experts had been received at various stages of this research and had been utilized during development and implementation of the model. Focus group input was also helpful for validation of the model and its results. It was hoped that the model developed would be useful to construction owner organizations in order to assess their IPD readiness and to identify appropriate ICT improvement strategies.
Resumo:
This project studied the frequency and of water contamination at the source, during transportation, and at home to determine the causes of contamination and its impact on the health of children aged 0 to 5 years. The methods used were construction of the infrastructure for three sources of potable water, administration of a questionnaire about socioeconomic status and sanitation behavior, anthropometric measurement of children, and analysis of water and feces. The contamination, first thought to be only a function of rainfall, turned out to be a very complex phenomenon. Water in homes was contaminated (43.4%) with more than 1100 total coliforms/100 ml due to the use of unclean utensils to transport and store water. This socio-economic and cultural problem should be ad- dressed with health education about sanitation, The latrines (found in 43.8% of families) presented a double-edged problem. The extremely high population density reduced the surface area of land per family, which resulted in a severe nutritional deficit (15% of the children) affecting mainly young children, rendering them more susceptible to diarrhea (three episodes/child/year).
Resumo:
The Everglades are undergoing the world largest wetland restoration project with the aim of returning this system to hydrological conditions in place prior to anthropogenic modifications. Therefore, it is essential to know what these pristine conditions were. In this work, molecular marker (biomarker) distributions and carbon stable isotopic signatures in sediment samples were employed to assess historical environmental changes in Florida Bay over approximately the last 4000 years. Two biomarkers of terrestrial plants, particularly for mangroves (taraxerol and C29 n-alkane), combined with two seagrass proxies (the Paq and the C25/C 27 n-alkan-2-one ratio) revealed a sedimentary environmental shift from freshwater marshes to mangrove swamps and then to seagrass dominated marine ecosystems, likely as a result of sea-level rise in Florida Bay since the Holocene. The maximum values for the Paq and the C 25/C27 n-alkan-2-ones occurred during the 20th century, suggesting that the greatest abundance of seagrass cover is a recent rather than a historical, long-term phenomenon. The greater oscillation in frequency and amplitude for the biomarkers after 1900 potentially reflects an ecosystem under increasing anthropogenic stress. Several algal biomarkers such as C20 highly branched isoprenoids (HBIs), C 25 HBIs and dinosterol indicative of cyanobacteria, diatom and dinoflagellate organic matter inputs respectively, increased dramatically in the latter part of the 20th century and were attributed to recent anthropogenic changes in Florida Bay. ^ The highlight of this work is the development of HBIs as paleo-proxies. As biomarkers of diatoms, the C25 HBIs in the core from the central bay displayed the highest concentration at mid depth, reflecting strong historical inputs of diatom-derived sedimentary OM during that period. In fact, the depth profile of C25 HBIs coincided quite well with historical variations in diatom abundance and variations in diatom species composition in central Florida Bay based on the results of fossil diatom species analysis by microscopy. This study provides evidence that some C25 HBIs can be applied as biomarkers for certain diatom inputs in paleoenvironmental studies. The sources of C20 and C30 HBIs and their potential applicability as paleo-proxies were also investigated and their sources assessed based on their δ13C distributions. ^
Resumo:
The purpose of this study was to determine the extent to which oceanic anoxic events (OAE's) are recorded in deep-water deposits of the former western Tethyan Sea, by investigating the Cenomanian-Turonian time interval characterized by the worldwide OAE 2 event. The study improved our knowledge of the possible controlling mechanisms that triggered this event at these sites, and furthered our understanding of this global phenomenon. This was examined by high-resolution, multi-proxy analyses of sediments at DSDP Sites 386 and 144, including sedimentology, scanning electron microscopy, stable isotopes, bulk and clay mineralogy, major and trace element geochemistry, biomarkers, and paleontological data. ^ The results provide a better stratigraphic resolution for the Cenomanian-Turonian, which allowed for more precise determination of chronologic boundaries, sedimentation rates at DSDP Site 386, and a more accurate calculation of the frequency of the cycles recorded in the sequence, which fall predominantly within the precession (∼23 kyr) and short eccentricity (∼100 kyr) ranges. The combined proxies allow assessment of the correlation of δ13Corg, and major and trace elements with the predominance of cyanobacteria. These organisms were the main producers of the organic matter during the dysoxic and euxinic conditions of OAE 2 at DSDP Site 386. A huge amount of microcrystalline quartz of eolian origin is also associated with OAE 2. The geochemical proxies further provide evidence that OAE 2 was linked to increased volcanism outside the deep water of the proto-Atlantic Ocean. The clays in the Turonian sediments are terrigenous and derived predominantly from eolian transport. Comparing DSDP Site 386 and 144 with stratotype sections, the δ13C org and TOC data indicate that OAE 2 seems diachronous throughout the proto-Atlantic Ocean. ^ This study concludes that the development of anoxic conditions in the deep water of the Atlantic during the latest Cenomanian-Turonian resulted from a combination of factors related to local oceanic setting and mitigated by global tectonism and climate. The data provide a more comprehensive view of the interacting factors that led to sustained high productivity of the cyanobacteria and photosynthetic protists that produced organic-carbon-rich deposits in the world's oceans. ^
Resumo:
The integration of automation (specifically Global Positioning Systems (GPS)) and Information and Communications Technology (ICT) through the creation of a Total Jobsite Management Tool (TJMT) in construction contractor companies can revolutionize the way contractors do business. The key to this integration is the collection and processing of real-time GPS data that is produced on the jobsite for use in project management applications. This research study established the need for an effective planning and implementation framework to assist construction contractor companies in navigating the terrain of GPS and ICT use. An Implementation Framework was developed using the Action Research approach. The framework consists of three components, as follows: (i) ICT Infrastructure Model, (ii) Organizational Restructuring Model, and (iii) Cost/Benefit Analysis. The conceptual ICT infrastructure model was developed for the purpose of showing decision makers within highway construction companies how to collect, process, and use GPS data for project management applications. The organizational restructuring model was developed to assist companies in the analysis and redesign of business processes, data flows, core job responsibilities, and their organizational structure in order to obtain the maximum benefit at the least cost in implementing GPS as a TJMT. A cost-benefit analysis which identifies and quantifies the cost and benefits (both direct and indirect) was performed in the study to clearly demonstrate the advantages of using GPS as a TJMT. Finally, the study revealed that in order to successfully implement a program to utilize GPS data as a TJMT, it is important for construction companies to understand the various implementation and transitioning issues that arise when implementing this new technology and business strategy. In the study, Factors for Success were identified and ranked to allow a construction company to understand the factors that may contribute to or detract from the prospect for success during implementation. The Implementation Framework developed as a result of this study will serve to guide highway construction companies in the successful integration of GPS and ICT technologies for use as a TJMT.
Resumo:
Bio-molecular interactions exist ubiquitously in all biological systems. This dissertation project was to construct a powerful surface plasmon resonance (SPR) sensor. The SPR system is used to study bio-molecular interactions in real time and without labeling. Surface plasmon is the oscillation of free electrons in metals coupled with surface electromagnetic waves. These surface electromagnetic waves provide a sensitive probe to study bio-molecular interactions on metal surfaces. This project resulted in the successful construction and optimization of a homemade SPR sensor and the development of several new powerful protocols to study bio-molecular interactions. It was discovered through this project that the limitations of earlier SPR sensors are related not only to the instrumentation design and operating procedures, but also to the complex behaviors of bio-molecules on sensor surfaces that were very different from that in solution. Based on these discoveries the instrumentation design and operating procedures were fully optimized. A set of existing sensor surface treatment protocols were tested and evaluated and new protocols were developed in this project. The new protocols have demonstrated excellent performance to study biomolecular interactions. The optimized home-made SPR sensor was used to study protein-surface interactions. These protein-surface interactions are responsible for many complex organic cell activities. The co-existence of different driving forces and their correlation with the structure of the protein and the surface make the understanding of the fundamental mechanism of protein-surface interactions a very challenging task. Using the improved SPR sensor, the electrostatic interaction and hydrophobic interaction were studied separately. The results of this project directly confirmed the theoretical predictions for electrostatic force between the protein and surface. In addition, this project demonstrated that the strength of the protein-surface hydrophobic interaction does not solely depend on the hydrophobicity as reported earlier. Surface structure also plays a significant role.
Resumo:
Environmentally conscious construction has received a significant amount of research attention during the last decades. Even though construction literature is rich in studies that emphasize the importance of environmental impact during the construction phase, most of the previous studies failed to combine environmental analysis with other project performance criteria in construction. This is mainly because most of the studies have overlooked the multi-objective nature of construction projects. In order to achieve environmentally conscious construction, multi-objectives and their relationships need to be successfully analyzed in the complex construction environment. The complex construction system is composed of changing project conditions that have an impact on the relationship between time, cost and environmental impact (TCEI) of construction operations. Yet, this impact is still unknown by construction professionals. Studying this impact is vital to fulfill multiple project objectives and achieve environmentally conscious construction. This research proposes an analytical framework to analyze the impact of changing project conditions on the relationship of TCEI. This study includes green house gas (GHG) emissions as an environmental impact category. The methodology utilizes multi-agent systems, multi-objective optimization, analytical network process, and system dynamics tools to study the relationships of TCEI and support decision-making under the influence of project conditions. Life cycle assessment (LCA) is applied to the evaluation of environmental impact in terms of GHG. The mixed method approach allowed for the collection and analysis of qualitative and quantitative data. Structured interviews of professionals in the highway construction field were conducted to gain their perspectives in decision-making under the influence of certain project conditions, while the quantitative data were collected from the Florida Department of Transportation (FDOT) for highway resurfacing projects. The data collected were used to test the framework. The framework yielded statistically significant results in simulating project conditions and optimizing TCEI. The results showed that the change in project conditions had a significant impact on the TCEI optimal solutions. The correlation between TCEI suggested that they affected each other positively, but in different strengths. The findings of the study will assist contractors to visualize the impact of their decision on the relationship of TCEI.
Resumo:
Background Arsenic is one of the most ubiquitous toxins and endangers the health of tens of millions of humans worldwide. It is a mainly a water-borne contaminant. Inorganic trivalent arsenic (AsIII) is one of the major species that exists environmentally. The transport of AsIII has been studied in microbes, plants and mammals. Members of the aquaglyceroporin family have been shown to actively conduct AsIII and its organic metabolite, monomethylarsenite (MAsIII). However, the transport of AsIII and MAsIII in in any fish species has not been characterized. Results In this study, five members of the aquaglyceroporin family from zebrafish (Danio rerio) were cloned, and their ability to transport water, glycerol, and trivalent arsenicals (AsIII and MAsIII) and antimonite (SbIII) was investigated. Genes for at least seven aquaglyceroporins have been annotated in the zebrafish genome project. Here, five genes which are close homologues to human AQP3, AQP9 and AQP10 were cloned from a zebrafish cDNA preparation. These genes were namedaqp3, aqp3l, aqp9a, aqp9b and aqp10 according to their similarities to the corresponding human AQPs. Expression of aqp9a, aqp9b, aqp3, aqp3l and aqp10 in multiple zebrafish organs were examined by RT-PCR. Our results demonstrated that these aquaglyceroporins exhibited different tissue expression. They are all detected in more than one tissue. The ability of these five aquaglyceroporins to transport water, glycerol and the metalloids arsenic and antimony was examined following expression in oocytes from Xenopus leavis. Each of these channels showed substantial glycerol transport at equivalent rates. These aquaglyceroporins also facilitate uptake of inorganic AsIII, MAsIII and SbIII. Arsenic accumulation in fish larvae and in different tissues from adult zebrafish was studied following short-term arsenic exposure. The results showed that liver is the major organ of arsenic accumulation; other tissues such as gill, eye, heart, intestine muscle and skin also exhibited significant ability to accumulate arsenic. The zebrafish larvae also accumulate considerable amounts of arsenic. Conclusion This is the first molecular identification of fish arsenite transport systems and we propose that the extensive expression of the fish aquaglyceroporins and their ability to transport metalloids suggests that aquaglyceroporins are the major pathways for arsenic accumulation in a variety of zebrafish tissues. Uptake is one important step of arsenic metabolism. Our results will contribute to a new understanding of aquatic arsenic metabolism and will support the use of zebrafish as a new model system to study arsenic associated human diseases.
Resumo:
Construction organizations typically deal with large volumes of project data containing valuable information. It is found that these organizations do not use these data effectively for planning and decision-making. There are two reasons. First, the information systems in construction organizations are designed to support day-to-day construction operations. The data stored in these systems are often non-validated, non-integrated and are available in a format that makes it difficult for decision makers to use in order to make timely decisions. Second, the organizational structure and the IT infrastructure are often not compatible with the information systems thereby resulting in higher operational costs and lower productivity. These two issues have been investigated in this research with the objective of developing systems that are structured for effective decision-making. ^ A framework was developed to guide storage and retrieval of validated and integrated data for timely decision-making and to enable construction organizations to redesign their organizational structure and IT infrastructure matched with information system capabilities. The research was focused on construction owner organizations that were continuously involved in multiple construction projects. Action research and Data warehousing techniques were used to develop the framework. ^ One hundred and sixty-three construction owner organizations were surveyed in order to assess their data needs, data management practices and extent of use of information systems in planning and decision-making. For in-depth analysis, Miami-Dade Transit (MDT) was selected which is in-charge of all transportation-related construction projects in the Miami-Dade county. A functional model and a prototype system were developed to test the framework. The results revealed significant improvements in data management and decision-support operations that were examined through various qualitative (ease in data access, data quality, response time, productivity improvement, etc.) and quantitative (time savings and operational cost savings) measures. The research results were first validated by MDT and then by a representative group of twenty construction owner organizations involved in various types of construction projects. ^
Resumo:
Trenchless methods have been considered to be a viable solution for pipeline projects in urban areas. Their applicability in pipeline projects is expected to increase with the rapid advancements in technology and emerging concerns regarding social costs related to trenching methods. Selecting appropriate project delivery system (PDS) is a key to the success of trenchless projects. To ensure success of the project, the selected project delivery should be tailored to trenchless project specific characteristics and owner needs, since the effectiveness of project delivery systems differs based on different project characteristics and owners requirements. Since different trenchless methods have specific characteristics such rate of installation, lengths of installation, and accuracy, the same project delivery systems may not be equally effective for different methods. The intent of this paper is to evaluate the appropriateness of different PDS for different trenchless methods. PDS are examined through a structured decision-making process called Fuzzy Delivery System Selection Model (FDSSM). The process of incorporating the impacts of: (a) the characteristics of trenchless projects and (b) owners’ needs in the FDSSM is performed by collecting data using questionnaires deployed to professionals involved in the trenchless industry in order to determine the importance of delivery systems selection attributes for different trenchless methods, and then analyzing this data. The sensitivity of PDS rankings with respect to trenchless methods is considered in order to evaluate whether similar project delivery systems are equally effective in different trenchless methods. The effectiveness of PDS with respect to attributes is defined as follows: a project delivery system is most effective with respect to an attribute (e.g., ability to control growth in costs ) if there is no project delivery system that is more effective than that PDS. The results of this study may assist trenchless project owners to select the appropriate PDS for the trenchless method selected.
Resumo:
The Florida Everglades has a long history of anthropogenic changes which have impacted the quantity and quality of water entering the system. Since the construction of Tamiami Trail in the 1920's, overland flow to the Florida Everglades has decreased significantly, impacting ecosystems from the wetlands to the estuary. The MIKE Marsh Model of Everglades National Park (M3ENP) is a numerical model, which simulates Everglades National Park (ENP) hydrology using MIKE SHE/MIKE 11software. This model has been developed to determine the parameters that effect Everglades hydrology and understand the impact of specific flow changes on the hydrology of the system. ^ As part of the effort to return flows to the historical levels, several changes to the existing water management infrastructure have been implemented or are in the design phase. Bridge construction scenarios were programed into the M3ENP model to review the effect of these structural changes and evaluate the potential impacts on water levels and hydroperiods in the receiving Northeast Shark Slough ecosystem. These scenarios have shown critical water level increases in an area which has been in decline due to low water levels. Results from this work may help guide future decisions for restoration designs. ^ Excess phosphorus entering Everglades National Park in South Florida may promote the growth of more phosphorus-opportunistic species and alter the food chain from the bottom up. Two phosphorus transport methods were developed into the M3ENP hydrodynamic model to determine the factors affecting phosphorus transport and the impact of bridge construction on water quality. Results showed that while phosphorus concentrations in surface waters decreased overall, some areas within ENP interior may experience an increase in phosphorus loading which the addition of bridges to Tamiami Trail. Finally, phosphorus data and modeled water level data was used to evaluate the spectral response of Everglades vegetation to increasing phosphorus availability using Landsat imagery.^
Resumo:
Construction organizations typically deal with large volumes of project data containing valuable information. It is found that these organizations do not use these data effectively for planning and decision-making. There are two reasons. First, the information systems in construction organizations are designed to support day-to-day construction operations. The data stored in these systems are often non-validated, nonintegrated and are available in a format that makes it difficult for decision makers to use in order to make timely decisions. Second, the organizational structure and the IT infrastructure are often not compatible with the information systems thereby resulting in higher operational costs and lower productivity. These two issues have been investigated in this research with the objective of developing systems that are structured for effective decision-making. A framework was developed to guide storage and retrieval of validated and integrated data for timely decision-making and to enable construction organizations to redesign their organizational structure and IT infrastructure matched with information system capabilities. The research was focused on construction owner organizations that were continuously involved in multiple construction projects. Action research and Data warehousing techniques were used to develop the framework. One hundred and sixty-three construction owner organizations were surveyed in order to assess their data needs, data management practices and extent of use of information systems in planning and decision-making. For in-depth analysis, Miami-Dade Transit (MDT) was selected which is in-charge of all transportation-related construction projects in the Miami-Dade county. A functional model and a prototype system were developed to test the framework. The results revealed significant improvements in data management and decision-support operations that were examined through various qualitative (ease in data access, data quality, response time, productivity improvement, etc.) and quantitative (time savings and operational cost savings) measures. The research results were first validated by MDT and then by a representative group of twenty construction owner organizations involved in various types of construction projects.