4 resultados para Transgenic zebrafish
em Digital Commons at Florida International University
Resumo:
Background Arsenic is one of the most ubiquitous toxins and endangers the health of tens of millions of humans worldwide. It is a mainly a water-borne contaminant. Inorganic trivalent arsenic (AsIII) is one of the major species that exists environmentally. The transport of AsIII has been studied in microbes, plants and mammals. Members of the aquaglyceroporin family have been shown to actively conduct AsIII and its organic metabolite, monomethylarsenite (MAsIII). However, the transport of AsIII and MAsIII in in any fish species has not been characterized. Results In this study, five members of the aquaglyceroporin family from zebrafish (Danio rerio) were cloned, and their ability to transport water, glycerol, and trivalent arsenicals (AsIII and MAsIII) and antimonite (SbIII) was investigated. Genes for at least seven aquaglyceroporins have been annotated in the zebrafish genome project. Here, five genes which are close homologues to human AQP3, AQP9 and AQP10 were cloned from a zebrafish cDNA preparation. These genes were namedaqp3, aqp3l, aqp9a, aqp9b and aqp10 according to their similarities to the corresponding human AQPs. Expression of aqp9a, aqp9b, aqp3, aqp3l and aqp10 in multiple zebrafish organs were examined by RT-PCR. Our results demonstrated that these aquaglyceroporins exhibited different tissue expression. They are all detected in more than one tissue. The ability of these five aquaglyceroporins to transport water, glycerol and the metalloids arsenic and antimony was examined following expression in oocytes from Xenopus leavis. Each of these channels showed substantial glycerol transport at equivalent rates. These aquaglyceroporins also facilitate uptake of inorganic AsIII, MAsIII and SbIII. Arsenic accumulation in fish larvae and in different tissues from adult zebrafish was studied following short-term arsenic exposure. The results showed that liver is the major organ of arsenic accumulation; other tissues such as gill, eye, heart, intestine muscle and skin also exhibited significant ability to accumulate arsenic. The zebrafish larvae also accumulate considerable amounts of arsenic. Conclusion This is the first molecular identification of fish arsenite transport systems and we propose that the extensive expression of the fish aquaglyceroporins and their ability to transport metalloids suggests that aquaglyceroporins are the major pathways for arsenic accumulation in a variety of zebrafish tissues. Uptake is one important step of arsenic metabolism. Our results will contribute to a new understanding of aquatic arsenic metabolism and will support the use of zebrafish as a new model system to study arsenic associated human diseases.
Resumo:
Endothelin-3 (Edn3) has been shown to be an essential environmental cue in melanocyte development. Edn3 and its receptor, EdnrB, are allelic to mouse mutations occurring at the lethal spotting and piebald loci, respectively; these mutations result in hypopigmentation phenotypes. Mutations in the genes for both Edn3 and EdnrB are implicated in human pigmentation disorders such as Waardenburg-Shah syndrome, which is characterized by pigmentation defects, deafness, and megacolon. In this study, a tetracycline-inducible transgenic mouse model that overexpresses Edn3 under the control of the Keratin 5 promoter was shown to produce a hyperpigmentation phenotype that decreases over time. The expression pattern of transgenic Edn3 and its effects on the melanocyte population were examined in transgenic embryos, postnatal skin, and the skin of adult mice that exhibit faded hyperpigmentation. These studies suggest that overexpression of Edn3 in this model is restricted primarily to the roof plate of the neural tube and surface ectoderm in the developing embryo and to keratinocytes in the epidermis of postnatal mice. A decline in transgenic expression and a reduction in the dermal melanocytes and free melanin that characterize the phenotype in juvenile mice were shown to correlate with the fading of the hyperpigmentation phenotype. Transgenic mice in which transgenic expression was repressed (resulting in the disappearance of the hyperpigmentation phenotype) also exhibited a decrease in the dermal melanocyte population. The Edn3-overexpressing mice used in this study might be helpful m understanding human skin conditions characterized by dermal melanocytosis.
Resumo:
Neural crest cells (NCC) are a unique population of cells in vertebrates that arise between the presumptive epidermis and the dorsal most region of the neural tube. During neurulation, NCC migrate to many regions of the body to give rise to a wide variety of cell types. NCC that originate from the neural tube at the levels of somite 1-7 colonize the gut and give rise to the enteric ganglia. The endothelin signaling pathway has been shown to be crucial for proper development of some neural crest derivatives. Mice and humans with mutations in the Endothelin receptor b (Ednrb) gene exhibit similar phenotypes characterized by hypopigmentation, hearing loss, and megacolon. Thesephenotypes are due to lack of melanocytes in the skin, inner ear and enteric ganglia in the distal portion of the colon, respectively. It is well established that Ednrb is required early during the embryonic development for normal innervation of the gut. However, it is not clear if Ednrb acts on enteric neuron precursor cells or in pre-committed NC precursors. Additionally, it is controversial whether the action of Ednrb is cell autonomous or non- autonomous. We generated transgenic mice that express Ednrb under the control of the Nestin second intron enhancer (Nes) which drives expression to pre-migrating NCC. These mice were crosses to the spontaneous mouse mutant piebald lethal, which carriers a null mutation in Ednrb and exhibits enteric aganglionosis. The Nes-Ednrb was capable of rescuing the aganglianosis phenotype of piebald lethal mutants demonstrating that expression of Ednrb in pre-committed precursors is sufficient for normal enteric ganglia development. This study provides insight in early embryonic development of NCC and could eventually have potential use in cellular therapies for Hirschsprung's disease.
Resumo:
Cyanobacteria ("blue-green algae") are known to produce a diverse repertoire of biologically active secondary metabolites. When associated with so-called "harmful algal blooms", particularly in freshwater systems, a number of these metabolites have been associated—as "toxins", or commonly "cyanotoxins"—with human and animal health concerns. In addition to the known water-soluble toxins from these genera (i.e. microcystins, cylindrospermopsin, and saxitoxins), our studies have shown that there are metabolites within the lipophilic extracts of these strains that inhibit vertebrate development in zebrafish embryos. Following these studies, the zebrafish embryo model was implemented in the bioassay-guided purification of four isolates of cyanobacterial harmful algal blooms, namely Aphanizomenon, two isolates of Cylindrospermopsis, and Microcystis, in order to identify and chemically characterize the bioactive lipophilic metabolites in these isolates. ^ We have recently isolated a group of polymethoxy-1-alkenes (PMAs), as potential toxins, based on the bioactivity observed in the zebrafish embryos. Although PMAs have been previously isolated from diverse cyanobacteria, they have not previously been associated with relevant toxicity. These compounds seem to be widespread across the different genera of cyanobacteria, and, according to our studies, suggested to be derived from the polyketide biosynthetic pathway which is a common synthetic route for cyanobacterial and other algal toxins. Thus, it can be argued that these metabolites are perhaps important contributors to the toxicity of cyanobacterial blooms. In addition to the PMAs, a set of bioactive glycosidic carotenoids were also isolated because of their inhibition of zebrafish embryonic development. These pigmented organic molecules are found in many photosynthetic organisms, including cyanobacteria, and they have been largely associated with the prevention of photooxidative damage. This is the first indication of these compounds as toxic metabolites and the hypothesized mode of action is via their biotransformation to retinoids, some of which are known to be teratogenic. Additional fractions within all four isolates have been shown to contain other uncharacterized lipophilic toxic metabolites. This apparent repertoire of lipophilic compounds may contribute to the toxicity of these cyanobacterial harmful algal blooms, which were previously attributed primarily to the presence of the known water-soluble toxins.^