15 resultados para Transatlantic communications
em Digital Commons at Florida International University
Resumo:
Recently, wireless network technology has grown at such a pace that scientific research has become a practical reality in a very short time span. Mobile wireless communications have witnessed the adoption of several generations, each of them complementing and improving the former. One mobile system that features high data rates and open network architecture is 4G. Currently, the research community and industry, in the field of wireless networks, are working on possible choices for solutions in the 4G system. 4G is a collection of technologies and standards that will allow a range of ubiquitous computing and wireless communication architectures. The researcher considers one of the most important characteristics of future 4G mobile systems the ability to guarantee reliable communications from 100 Mbps, in high mobility links, to as high as 1 Gbps for low mobility users, in addition to high efficiency in the spectrum usage. On mobile wireless communications networks, one important factor is the coverage of large geographical areas. In 4G systems, a hybrid satellite/terrestrial network is crucial to providing users with coverage wherever needed. Subscribers thus require a reliable satellite link to access their services when they are in remote locations, where a terrestrial infrastructure is unavailable. Thus, they must rely upon satellite coverage. Good modulation and access technique are also required in order to transmit high data rates over satellite links to mobile users. This technique must adapt to the characteristics of the satellite channel and also be efficient in the use of allocated bandwidth. Satellite links are fading channels, when used by mobile users. Some measures designed to approach these fading environments make use of: (1) spatial diversity (two receive antenna configuration); (2) time diversity (channel interleaver/spreading techniques); and (3) upper layer FEC. The author proposes the use of OFDM (Orthogonal Frequency Multiple Access) for the satellite link by increasing the time diversity. This technique will allow for an increase of the data rate, as primarily required by multimedia applications, and will also optimally use the available bandwidth. In addition, this dissertation approaches the use of Cooperative Satellite Communications for hybrid satellite/terrestrial networks. By using this technique, the satellite coverage can be extended to areas where there is no direct link to the satellite. For this purpose, a good channel model is necessary.
Resumo:
The 10th Parallel marine and aerial routes linking South America and West Africa harbor a long history of trade between the two continents. More recently, these routes have become one of the preferred routes used by Latin American traffickers for shipping multi-tons of cocaine destined for the growing European market. The Parallel’s growing importance in cocaine trafficking has made it known as cocaine “Highway 10” among law enforcement. Latin American cocaine trafficking organizations, particularly the Colombian ones, have established stable bases in West Africa, controlling and developing the route. West African facilitators, Nigerians as well as an increasing number of nationals from all countries where shipments are stocked, have developed a stronger capacity for taking over more ambitious and lucrative role in the business as transporters, partners, and final buyers. In one case (Guinea), the West African partner had already started developing his own trafficking and manufacturing capacity, reproducing the patterns that made Colombia the business model of the drug industry. In this reshaped context, of particular concern is the role played by the Colombian FARC (Fuerzas Armadas Revolucionarias de Colombia) as provider of cocaine shipments to West African cocaine entrepreneurs, as well as the impact of drug trafficking money on the financing of terrorist and rebel groups operating in the Sahel-Saharan belt.
Resumo:
The Front Office Manager: Key to Hotel Communications is a written study by Denney G. Rutherford, Department of Hotel and Restaurant Administration, College of Business and Economics at Washington State University. In it he initially observes, “Since the front office manager is usually viewed as the key to the efficient and orderly operation of a hotel, the author has researched the job and activities of this individual in an attempt to provide data about an area which he says was "intuitively known" but never "empirically explored." “Current literature implies that the activities of the front office are so important to the daily operations of the hotel that it occupies a preeminent position among other departments,” Rutherford says. He also references, Gray and Liguori, who describe the front office as: “the nerve center of the hote1,” echoing an early work by Heldenbrand indicating that it “becomes a sort of listening post for management.” The quotes are cited. The primary stage of the article relies on a seven-page, two-part questionnaire, which was used to collect data regarding the FOM – front office manager - position. Even though the position is considered a crucial one, it seems there is a significant lack of pragmatic data regarding it. Rutherford graphs the studies. Good communication skills are imperative. “Other recent research has suggested that the skills of effective communication are among the most vital a manager at any level can bring to his/her endeavors in the service industries,” Rutherford notes. He provides a detailed – front office communications model – to illustrate the functions. In, Table 4, for example - Office Manager as Facilitator – Rutherford provides Likert Rating Scale values for a comprehensive list of front office tasks. Rutherford informs you that the communicative skills of a front office manager flow across the board, encompassing variables from guest relation exchanges to all the disparate components of employee relations. Not withstanding and compared to technical knowledge, such as computer and fiscal skills, Rutherford suggests: “The most powerful message derived from analysis of the data on the FOM's job is that communication in its various forms is clearly central to the successful mission of the front office.”
Resumo:
In this thesis, we proposed the use of device-to-device (D2D) communications for extending the coverage area of active base stations, for public safety communications with partial coverage. A 3GPP standard compliant D2D system level simulator is developed for HetNets and public safety scenarios and used to evaluate the performance of D2D discovery and communications underlying cellular networks. For D2D discovery, the benefits of time-domain inter-cell interference coordi- nation (ICIC) approaches by using almost blank subframes were evaluated. Also, the use of multi-hop is proposed to improve, even further, the performance of the D2D discovery process. Finally, the possibility of using multi-hop D2D communications for extending the coverage area of active base stations was evaluated. Improvements in energy and spectral efficiency, when compared with the case of direct UE-eNB communi- cations, were demonstrated. Moreover, UE power control techniques were applied to reduce the effects of interference from neighboring D2D links.
Resumo:
Recently, wireless network technology has grown at such a pace that scientific research has become a practical reality in a very short time span. One mobile system that features high data rates and open network architecture is 4G. Currently, the research community and industry, in the field of wireless networks, are working on possible choices for solutions in the 4G system. The researcher considers one of the most important characteristics of future 4G mobile systems the ability to guarantee reliable communications at high data rates, in addition to high efficiency in the spectrum usage. On mobile wireless communication networks, one important factor is the coverage of large geographical areas. In 4G systems, a hybrid satellite/terrestrial network is crucial to providing users with coverage wherever needed. Subscribers thus require a reliable satellite link to access their services when they are in remote locations where a terrestrial infrastructure is unavailable. The results show that good modulation and access technique are also required in order to transmit high data rates over satellite links to mobile users. The dissertation proposes the use of OFDM (Orthogonal Frequency Multiple Access) for the satellite link by increasing the time diversity. This technique will allow for an increase of the data rate, as primarily required by multimedia applications, and will also optimally use the available bandwidth. In addition, this dissertation approaches the use of Cooperative Satellite Communications for hybrid satellite/terrestrial networks. By using this technique, the satellite coverage can be extended to areas where there is no direct link to the satellite. The issue of Cooperative Satellite Communications is solved through a new algorithm that forwards the received data from the fixed node to the mobile node. This algorithm is very efficient because it does not allow unnecessary transmissions and is based on signal to noise ratio (SNR) measures.
Resumo:
The purpose of this research is to develop an optimal kernel which would be used in a real-time engineering and communications system. Since the application is a real-time system, relevant real-time issues are studied in conjunction with kernel related issues. The emphasis of the research is the development of a kernel which would not only adhere to the criteria of a real-time environment, namely determinism and performance, but also provide the flexibility and portability associated with non-real-time environments. The essence of the research is to study how the features found in non-real-time systems could be applied to the real-time system in order to generate an optimal kernel which would provide flexibility and architecture independence while maintaining the performance needed by most of the engineering applications. Traditionally, development of real-time kernels has been done using assembly language. By utilizing the powerful constructs of the C language, a real-time kernel was developed which addressed the goals of flexibility and portability while still meeting the real-time criteria. The implementation of the kernel is carried out using the powerful 68010/20/30/40 microprocessor based systems.