7 resultados para Traffic Pattern Analysis
em Digital Commons at Florida International University
Resumo:
With advances in science and technology, computing and business intelligence (BI) systems are steadily becoming more complex with an increasing variety of heterogeneous software and hardware components. They are thus becoming progressively more difficult to monitor, manage and maintain. Traditional approaches to system management have largely relied on domain experts through a knowledge acquisition process that translates domain knowledge into operating rules and policies. It is widely acknowledged as a cumbersome, labor intensive, and error prone process, besides being difficult to keep up with the rapidly changing environments. In addition, many traditional business systems deliver primarily pre-defined historic metrics for a long-term strategic or mid-term tactical analysis, and lack the necessary flexibility to support evolving metrics or data collection for real-time operational analysis. There is thus a pressing need for automatic and efficient approaches to monitor and manage complex computing and BI systems. To realize the goal of autonomic management and enable self-management capabilities, we propose to mine system historical log data generated by computing and BI systems, and automatically extract actionable patterns from this data. This dissertation focuses on the development of different data mining techniques to extract actionable patterns from various types of log data in computing and BI systems. Four key problems—Log data categorization and event summarization, Leading indicator identification , Pattern prioritization by exploring the link structures , and Tensor model for three-way log data are studied. Case studies and comprehensive experiments on real application scenarios and datasets are conducted to show the effectiveness of our proposed approaches.
Resumo:
Protecting confidential information from improper disclosure is a fundamental security goal. While encryption and access control are important tools for ensuring confidentiality, they cannot prevent an authorized system from leaking confidential information to its publicly observable outputs, whether inadvertently or maliciously. Hence, secure information flow aims to provide end-to-end control of information flow. Unfortunately, the traditionally-adopted policy of noninterference, which forbids all improper leakage, is often too restrictive. Theories of quantitative information flow address this issue by quantifying the amount of confidential information leaked by a system, with the goal of showing that it is intuitively "small" enough to be tolerated. Given such a theory, it is crucial to develop automated techniques for calculating the leakage in a system. ^ This dissertation is concerned with program analysis for calculating the maximum leakage, or capacity, of confidential information in the context of deterministic systems and under three proposed entropy measures of information leakage: Shannon entropy leakage, min-entropy leakage, and g-leakage. In this context, it turns out that calculating the maximum leakage of a program reduces to counting the number of possible outputs that it can produce. ^ The new approach introduced in this dissertation is to determine two-bit patterns, the relationships among pairs of bits in the output; for instance we might determine that two bits must be unequal. By counting the number of solutions to the two-bit patterns, we obtain an upper bound on the number of possible outputs. Hence, the maximum leakage can be bounded. We first describe a straightforward computation of the two-bit patterns using an automated prover. We then show a more efficient implementation that uses an implication graph to represent the two- bit patterns. It efficiently constructs the graph through the use of an automated prover, random executions, STP counterexamples, and deductive closure. The effectiveness of our techniques, both in terms of efficiency and accuracy, is shown through a number of case studies found in recent literature. ^
Resumo:
In China in particular, large, planned special events (e.g., the Olympic Games, etc.) are viewed as great opportunities for economic development. Large numbers of visitors from other countries and provinces may be expected to attend such events, bringing in significant tourism dollars. However, as a direct result of such events, the transportation system is likely to face great challenges as travel demand increases beyond its original design capacity. Special events in central business districts (CBD) in particular will further exacerbate traffic congestion on surrounding freeway segments near event locations. To manage the transportation system, it is necessary to plan and prepare for such special events, which requires prediction of traffic conditions during the events. This dissertation presents a set of novel prototype models to forecast traffic volumes along freeway segments during special events. Almost all research to date has focused solely on traffic management techniques under special event conditions. These studies, at most, provided a qualitative analysis and there was a lack of an easy-to-implement method for quantitative analyses. This dissertation presents a systematic approach, based separately on univariate time series model with intervention analysis and multivariate time series model with intervention analysis for forecasting traffic volumes on freeway segments near an event location. A case study was carried out, which involved analyzing and modelling the historical time series data collected from loop-detector traffic monitoring stations on the Second and Third Ring Roads near Beijing Workers Stadium. The proposed time series models, with expected intervention, are found to provide reasonably accurate forecasts of traffic pattern changes efficiently. They may be used to support transportation planning and management for special events.
Resumo:
In China in particular, large, planned special events (e.g., the Olympic Games, etc.) are viewed as great opportunities for economic development. Large numbers of visitors from other countries and provinces may be expected to attend such events, bringing in significant tourism dollars. However, as a direct result of such events, the transportation system is likely to face great challenges as travel demand increases beyond its original design capacity. Special events in central business districts (CBD) in particular will further exacerbate traffic congestion on surrounding freeway segments near event locations. To manage the transportation system, it is necessary to plan and prepare for such special events, which requires prediction of traffic conditions during the events. This dissertation presents a set of novel prototype models to forecast traffic volumes along freeway segments during special events. Almost all research to date has focused solely on traffic management techniques under special event conditions. These studies, at most, provided a qualitative analysis and there was a lack of an easy-to-implement method for quantitative analyses. This dissertation presents a systematic approach, based separately on univariate time series model with intervention analysis and multivariate time series model with intervention analysis for forecasting traffic volumes on freeway segments near an event location. A case study was carried out, which involved analyzing and modelling the historical time series data collected from loop-detector traffic monitoring stations on the Second and Third Ring Roads near Beijing Workers Stadium. The proposed time series models, with expected intervention, are found to provide reasonably accurate forecasts of traffic pattern changes efficiently. They may be used to support transportation planning and management for special events.
Resumo:
In recent years, wireless communication infrastructures have been widely deployed for both personal and business applications. IEEE 802.11 series Wireless Local Area Network (WLAN) standards attract lots of attention due to their low cost and high data rate. Wireless ad hoc networks which use IEEE 802.11 standards are one of hot spots of recent network research. Designing appropriate Media Access Control (MAC) layer protocols is one of the key issues for wireless ad hoc networks. ^ Existing wireless applications typically use omni-directional antennas. When using an omni-directional antenna, the gain of the antenna in all directions is the same. Due to the nature of the Distributed Coordination Function (DCF) mechanism of IEEE 802.11 standards, only one of the one-hop neighbors can send data at one time. Nodes other than the sender and the receiver must be either in idle or listening state, otherwise collisions could occur. The downside of the omni-directionality of antennas is that the spatial reuse ratio is low and the capacity of the network is considerably limited. ^ It is therefore obvious that the directional antenna has been introduced to improve spatial reutilization. As we know, a directional antenna has the following benefits. It can improve transport capacity by decreasing interference of a directional main lobe. It can increase coverage range due to a higher SINR (Signal Interference to Noise Ratio), i.e., with the same power consumption, better connectivity can be achieved. And the usage of power can be reduced, i.e., for the same coverage, a transmitter can reduce its power consumption. ^ To utilizing the advantages of directional antennas, we propose a relay-enabled MAC protocol. Two relay nodes are chosen to forward data when the channel condition of direct link from the sender to the receiver is poor. The two relay nodes can transfer data at the same time and a pipelined data transmission can be achieved by using directional antennas. The throughput can be improved significant when introducing the relay-enabled MAC protocol. ^ Besides the strong points, directional antennas also have some explicit drawbacks, such as the hidden terminal and deafness problems and the requirements of retaining location information for each node. Therefore, an omni-directional antenna should be used in some situations. The combination use of omni-directional and directional antennas leads to the problem of configuring heterogeneous antennas, i e., given a network topology and a traffic pattern, we need to find a tradeoff between using omni-directional and using directional antennas to obtain a better network performance over this configuration. ^ Directly and mathematically establishing the relationship between the network performance and the antenna configurations is extremely difficult, if not intractable. Therefore, in this research, we proposed several clustering-based methods to obtain approximate solutions for heterogeneous antennas configuration problem, which can improve network performance significantly. ^ Our proposed methods consist of two steps. The first step (i.e., clustering links) is to cluster the links into different groups based on the matrix-based system model. After being clustered, the links in the same group have similar neighborhood nodes and will use the same type of antenna. The second step (i.e., labeling links) is to decide the type of antenna for each group. For heterogeneous antennas, some groups of links will use directional antenna and others will adopt omni-directional antenna. Experiments are conducted to compare the proposed methods with existing methods. Experimental results demonstrate that our clustering-based methods can improve the network performance significantly. ^
Resumo:
Wnt signaling plays a vital role in many developmental processes. Wnt signaling has been implicated in neural crest induction and cell differentiation among other functions. In mice Wnts comprise a family of nineteen glycoproteins that bind to Frizzled (Fzd) receptors and LRP5/6 co-receptors. This activates beta-catenin, which translocates into the nucleus and acts as a transcription factor, resulting in differential gene expression. Specifically, Fzd 3 enhances Wnt 1 signaling. Wnt 1 and Fzd 3 are involved in neural crest induction and in neural crest-derived melanocyte development. We analyzed the expression pattern ofFzd 3 and the LRP 5/6 by in situ hybridization inmouse embryos. Our data suggests a role for these genes in neural crest induction and in melanocyte differentiation in the murine system. Results show Fzd 3 expression in the anterior part of the neural tube and in the hindbrain, while LRP 5 is expressed in the anterior part of the neural tube, in the hindbrain, and in the eye. We conclude that Fzd 3 and LRP 5 are expressed in the neural crest. In addition, Fzd 3 might act as the receptor while LRP 5 might act as the co-receptor for Wntl signaling in the murine system.
Resumo:
With the growing commercial importance of the Internet and the development of new real-time, connection-oriented services like IP-telephony and electronic commerce resilience is becoming a key issue in the design of TP-based networks. Two emerging technologies, which can accomplish the task of efficient information transfer, are Multiprotocol Label Switching (MPLS) and Differentiated Services. A main benefit of MPLS is the ability to introduce traffic-engineering concepts due to its connection-oriented characteristic. With MPLS it is possible to assign different paths for packets through the network. Differentiated services divides traffic into different classes and treat them differently, especially when there is a shortage of network resources. In this thesis, a framework was proposed to integrate the above two technologies and its performance in providing load balancing and improving QoS was evaluated. Simulation and analysis of this framework demonstrated that the combination of MPLS and Differentiated services is a powerful tool for QoS provisioning in IP networks.