6 resultados para Trading strategies
em Digital Commons at Florida International University
Resumo:
The profitability of momentum portfolios in the equity markets is derived from the continuation of stock returns over medium time horizons. The empirical evidence of momentum, however, is significantly different across markets around the world. The purpose of this dissertation is to: (1) help global investors determine the optimal selection and holding periods for momentum portfolios, (2) evaluate the profitability of the optimized momentum portfolios in different time periods and market states, (3) assess the investment strategy profits after considering transaction costs, and (4) interpret momentum returns within the framework of prior studies on investors’ behavior. Improving on the traditional practice of selecting arbitrary selection and holding periods, a genetic algorithm (GA) is employed. The GA performs a thorough and structured search to capture the return continuations and reversals patterns of momentum portfolios. Three portfolio formation methods are used: price momentum, earnings momentum, and earnings and price momentum and a non-linear optimization procedure (GA). The focus is on common equity of the U.S. and a select number of countries, including Australia, France, Germany, Japan, the Netherlands, Sweden, Switzerland and the United Kingdom. The findings suggest that the evolutionary algorithm increases the annualized profits of the U.S. momentum portfolios. However, the difference in mean returns is statistically significant only in certain cases. In addition, after considering transaction costs, both price and earnings and price momentum portfolios do not appear to generate abnormal returns. Positive risk-adjusted returns net of trading costs are documented solely during “up” markets for a portfolio long in prior winners only. The results on the international momentum effects indicate that the GA improves the momentum returns by 2 to 5% on an annual basis. In addition, the relation between momentum returns and exchange rate appreciation/depreciation is examined. The currency appreciation does not appear to influence significantly momentum profits. Further, the influence of the market state on momentum returns is not uniform across the countries considered. The implications of the above findings are discussed with a focus on the practical aspects of momentum investing, both in the U.S. and globally.
Resumo:
This dissertation is a collection of three economics essays on different aspects of carbon emission trading markets. The first essay analyzes the dynamic optimal emission control strategies of two nations. With a potential to become the largest buyer under the Kyoto Protocol, the US is assumed to be a monopsony, whereas with a large number of tradable permits on hand Russia is assumed to be a monopoly. Optimal costs of emission control programs are estimated for both the countries under four different market scenarios: non-cooperative no trade, US monopsony, Russia monopoly, and cooperative trading. The US monopsony scenario is found to be the most Pareto cost efficient. The Pareto efficient outcome, however, would require the US to make side payments to Russia, which will even out the differences in the cost savings from cooperative behavior. The second essay analyzes the price dynamics of the Chicago Climate Exchange (CCX), a voluntary emissions trading market. By examining the volatility in market returns using AR-GARCH and Markov switching models, the study associates the market price fluctuations with two different political regimes of the US government. Further, the study also identifies a high volatility in the returns few months before the market collapse. Three possible regulatory and market-based forces are identified as probable causes of market volatility and its ultimate collapse. Organizers of other voluntary markets in the US and worldwide may closely watch for these regime switching forces in order to overcome emission market crashes. The third essay compares excess skewness and kurtosis in carbon prices between CCX and EU ETS (European Union Emission Trading Scheme) Phase I and II markets, by examining the tail behavior when market expectations exceed the threshold level. Dynamic extreme value theory is used to find out the mean price exceedence of the threshold levels and estimate the risk loss. The calculated risk measures suggest that CCX and EU ETS Phase I are extremely immature markets for a risk investor, whereas EU ETS Phase II is a more stable market that could develop as a mature carbon market in future years.
Resumo:
Modern power networks incorporate communications and information technology infrastructure into the electrical power system to create a smart grid in terms of control and operation. The smart grid enables real-time communication and control between consumers and utility companies allowing suppliers to optimize energy usage based on price preference and system technical issues. The smart grid design aims to provide overall power system monitoring, create protection and control strategies to maintain system performance, stability and security. This dissertation contributed to the development of a unique and novel smart grid test-bed laboratory with integrated monitoring, protection and control systems. This test-bed was used as a platform to test the smart grid operational ideas developed here. The implementation of this system in the real-time software creates an environment for studying, implementing and verifying novel control and protection schemes developed in this dissertation. Phasor measurement techniques were developed using the available Data Acquisition (DAQ) devices in order to monitor all points in the power system in real time. This provides a practical view of system parameter changes, system abnormal conditions and its stability and security information system. These developments provide valuable measurements for technical power system operators in the energy control centers. Phasor Measurement technology is an excellent solution for improving system planning, operation and energy trading in addition to enabling advanced applications in Wide Area Monitoring, Protection and Control (WAMPAC). Moreover, a virtual protection system was developed and implemented in the smart grid laboratory with integrated functionality for wide area applications. Experiments and procedures were developed in the system in order to detect the system abnormal conditions and apply proper remedies to heal the system. A design for DC microgrid was developed to integrate it to the AC system with appropriate control capability. This system represents realistic hybrid AC/DC microgrids connectivity to the AC side to study the use of such architecture in system operation to help remedy system abnormal conditions. In addition, this dissertation explored the challenges and feasibility of the implementation of real-time system analysis features in order to monitor the system security and stability measures. These indices are measured experimentally during the operation of the developed hybrid AC/DC microgrids. Furthermore, a real-time optimal power flow system was implemented to optimally manage the power sharing between AC generators and DC side resources. A study relating to real-time energy management algorithm in hybrid microgrids was performed to evaluate the effects of using energy storage resources and their use in mitigating heavy load impacts on system stability and operational security.
Resumo:
The profitability of momentum portfolios in the equity markets is derived from the continuation of stock returns over medium time horizons. The empirical evidence of momentum, however, is significantly different across markets around the world. The purpose of this dissertation is to: 1) help global investors determine the optimal selection and holding periods for momentum portfolios, 2) evaluate the profitability of the optimized momentum portfolios in different time periods and market states, 3) assess the investment strategy profits after considering transaction costs, and 4) interpret momentum returns within the framework of prior studies on investors’ behavior. Improving on the traditional practice of selecting arbitrary selection and holding periods, a genetic algorithm (GA) is employed. The GA performs a thorough and structured search to capture the return continuations and reversals patterns of momentum portfolios. Three portfolio formation methods are used: price momentum, earnings momentum, and earnings and price momentum and a non-linear optimization procedure (GA). The focus is on common equity of the U.S. and a select number of countries, including Australia, France, Germany, Japan, the Netherlands, Sweden, Switzerland and the United Kingdom. The findings suggest that the evolutionary algorithm increases the annualized profits of the U.S. momentum portfolios. However, the difference in mean returns is statistically significant only in certain cases. In addition, after considering transaction costs, both price and earnings and price momentum portfolios do not appear to generate abnormal returns. Positive risk-adjusted returns net of trading costs are documented solely during “up” markets for a portfolio long in prior winners only. The results on the international momentum effects indicate that the GA improves the momentum returns by 2 to 5% on an annual basis. In addition, the relation between momentum returns and exchange rate appreciation/depreciation is examined. The currency appreciation does not appear to influence significantly momentum profits. Further, the influence of the market state on momentum returns is not uniform across the countries considered. The implications of the above findings are discussed with a focus on the practical aspects of momentum investing, both in the U.S. and globally.
Resumo:
This dissertation is a collection of three economics essays on different aspects of carbon emission trading markets. The first essay analyzes the dynamic optimal emission control strategies of two nations. With a potential to become the largest buyer under the Kyoto Protocol, the US is assumed to be a monopsony, whereas with a large number of tradable permits on hand Russia is assumed to be a monopoly. Optimal costs of emission control programs are estimated for both the countries under four different market scenarios: non-cooperative no trade, US monopsony, Russia monopoly, and cooperative trading. The US monopsony scenario is found to be the most Pareto cost efficient. The Pareto efficient outcome, however, would require the US to make side payments to Russia, which will even out the differences in the cost savings from cooperative behavior. The second essay analyzes the price dynamics of the Chicago Climate Exchange (CCX), a voluntary emissions trading market. By examining the volatility in market returns using AR-GARCH and Markov switching models, the study associates the market price fluctuations with two different political regimes of the US government. Further, the study also identifies a high volatility in the returns few months before the market collapse. Three possible regulatory and market-based forces are identified as probable causes of market volatility and its ultimate collapse. Organizers of other voluntary markets in the US and worldwide may closely watch for these regime switching forces in order to overcome emission market crashes. The third essay compares excess skewness and kurtosis in carbon prices between CCX and EU ETS (European Union Emission Trading Scheme) Phase I and II markets, by examining the tail behavior when market expectations exceed the threshold level. Dynamic extreme value theory is used to find out the mean price exceedence of the threshold levels and estimate the risk loss. The calculated risk measures suggest that CCX and EU ETS Phase I are extremely immature markets for a risk investor, whereas EU ETS Phase II is a more stable market that could develop as a mature carbon market in future years.
Resumo:
Modern power networks incorporate communications and information technology infrastructure into the electrical power system to create a smart grid in terms of control and operation. The smart grid enables real-time communication and control between consumers and utility companies allowing suppliers to optimize energy usage based on price preference and system technical issues. The smart grid design aims to provide overall power system monitoring, create protection and control strategies to maintain system performance, stability and security. This dissertation contributed to the development of a unique and novel smart grid test-bed laboratory with integrated monitoring, protection and control systems. This test-bed was used as a platform to test the smart grid operational ideas developed here. The implementation of this system in the real-time software creates an environment for studying, implementing and verifying novel control and protection schemes developed in this dissertation. Phasor measurement techniques were developed using the available Data Acquisition (DAQ) devices in order to monitor all points in the power system in real time. This provides a practical view of system parameter changes, system abnormal conditions and its stability and security information system. These developments provide valuable measurements for technical power system operators in the energy control centers. Phasor Measurement technology is an excellent solution for improving system planning, operation and energy trading in addition to enabling advanced applications in Wide Area Monitoring, Protection and Control (WAMPAC). Moreover, a virtual protection system was developed and implemented in the smart grid laboratory with integrated functionality for wide area applications. Experiments and procedures were developed in the system in order to detect the system abnormal conditions and apply proper remedies to heal the system. A design for DC microgrid was developed to integrate it to the AC system with appropriate control capability. This system represents realistic hybrid AC/DC microgrids connectivity to the AC side to study the use of such architecture in system operation to help remedy system abnormal conditions. In addition, this dissertation explored the challenges and feasibility of the implementation of real-time system analysis features in order to monitor the system security and stability measures. These indices are measured experimentally during the operation of the developed hybrid AC/DC microgrids. Furthermore, a real-time optimal power flow system was implemented to optimally manage the power sharing between AC generators and DC side resources. A study relating to real-time energy management algorithm in hybrid microgrids was performed to evaluate the effects of using energy storage resources and their use in mitigating heavy load impacts on system stability and operational security.