4 resultados para Toxic Bloom

em Digital Commons at Florida International University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Florida Bay is a unique subtropical estuary that while historically oligotrophic, has been subjected to both natural and anthropogenic stressors, including hurricanes, coastal eutrophication and other impacts. These stressors have resulted in degradation of water quality in the past several decades, most evidenced by reoccurring blooms of the picocyanobacterium Synechococcus spp. Major nutrient inputs consist of freshwater flows to the eastern region from runoff and regulated canal releases, inputs from the Everglades to the central region via Taylor Slough, exchanges with the Gulf of Mexico, which include intermittent Shark River inputs to the western region, stormwater and wastewater from the Florida Keys, and atmospheric deposition. These nutrient inputs have resulted in a transition from strong phosphorus (P) limitation of phytoplankton in the eastern bay to nitrogen (N) limitation in the western bay. Large blooms of Synechococcus were most pronounced in the central bay region, in the area of transition between P and N limitation, in the mid-1990s. Although non-toxic, these blooms, which have continued intermittently through the early 2000s, resulted in significant sea-grass and benthic organism mortalities. A new suite of stressors in 2005, including the passages of Hurricanes Katrina, Rita, and Wilma, additional canal releases, and the initiation of road construction to widen the main roadway leading to the Keys, were correlated with a large Synechococcus bloom in the previously clear, strongly P- limited, northeastern region of the bay. Sustained for 3 years, this bloom was accompanied by a shift from P limitation to N limitation during its course. Nutrient bioassay experiments suggest that this bloom persisted due to the ability of Synechococcus to access organic N and P sources, microbial and geochemical cycling of organic and inorganic nutrients in the water column and between the water column and sediments (both suspended particles and benthos), and decreased grazing by benthic fauna due to their die-off.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Altered freshwater inflows have affected circulation, salinity, and water quality patterns of Florida Bay, in turn altering the structure and function of this estuary. Changes in water quality and salinity and associated loss of dense turtle grass and other submerged aquatic vegetation (SAV) in Florida Bay have created a condition in the bay where sediments and nutrients have been regularly disturbed, frequently causing large and dense phytoplankton blooms. These algal and cyanobacterial blooms in turn often cause further loss of more recently established SAV, exacerbating the conditions causing the blooms. Chlorophyll a (CHLA) was selected as an indicator of water quality because it is an indicator of phytoplankton biomass, with concentrations reflecting the integrated effect of many of the water quality factors that may be altered by restoration activities. Overall, we assessed the CHLA indicator as being (1) relevant and reflecting the state of the Florida Bay ecosystem, (2) sensitive to ecosystem drivers (stressors, especially nutrient loading), (3) feasible to monitor, and (4) scientifically defensible. Distinct zones within the bay were defined according to statistical and consensual information. Threshold levels of CHLA for each zone were defined using historical data and scientific consensus. A presentation template of condition of the bay using these thresholds is shown as an example of an outreach product.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presences of heavy metals, organic contaminants and natural toxins in natural water bodies pose a serious threat to the environment and the health of living organisms. Therefore, there is a critical need to identify sustainable and environmentally friendly water treatment processes. In this dissertation, I focus on the fundamental studies of advanced oxidation processes and magnetic nano-materials as promising new technologies for water treatments. Advanced oxidation processes employ reactive oxygen species (ROS) which can lead to the mineralization of a number of pollutants and toxins. The rates of formation, steady-state concentrations, and kinetic parameters of hydroxyl radical and singlet oxygen produced by various TiO2 photocatalysts under UV or visible irradiations were measured using selective chemical probes. Hydroxyl radical is the dominant ROS, and its generation is dependent on experimental conditions. The optimal condition for generation of hydroxyl radical by of TiO2 coated glass microspheres is studied by response surface methodology, and the optimal conditions are applied for the degradation of dimethyl phthalate. Singlet oxygen (1O2) also plays an important role for advanced processes, so the degradation of microcystin-LR by rose bengal, an 1O2 sensitizer was studied. The measured bimolecular reaction rate constant between MC-LR and 1O2 is ∼ 106 M-1 s-1 based on competition kinetics with furfuryl alcohol. The typical adsorbent needs separation after the treatment, while magnetic iron oxides can be easily removed by a magnetic field. Maghemite and humic acid coated magnetite (HA-Fe3O4) were synthesized, characterized and applied for chromium(VI) removal. The adsorption of chromium(VI) by maghemite and HA-Fe3O4 follow a pseudo-second-order kinetic process. The adsorption of chromium(VI) by maghemite is accurately modeled using adsorption isotherms, and solution pH and presence of humic acid influence adsorption. Humic acid coated magnetite can adsorb and reduce chromium(VI) to non-toxic chromium (III), and the reaction is not highly dependent on solution pH. The functional groups associated with humic acid act as ligands lead to the Cr(III) complex via a coupled reduction-complexation mechanism. Extended X-ray absorption fine structure spectroscopy demonstrates the Cr(III) in the Cr-loaded HA-Fe 3O4 materials has six neighboring oxygen atoms in an octahedral geometry with average bond lengths of 1.98 Å.