29 resultados para Tor, Network Forensics, Traffic Analysis, Hidden Service, Deanonymization, Traffic Correlation
em Digital Commons at Florida International University
Resumo:
The Internet has become an integral part of our nation’s critical socio-economic infrastructure. With its heightened use and growing complexity however, organizations are at greater risk of cyber crimes. To aid in the investigation of crimes committed on or via the Internet, a network forensics analysis tool pulls together needed digital evidence. It provides a platform for performing deep network analysis by capturing, recording and analyzing network events to find out the source of a security attack or other information security incidents. Existing network forensics work has been mostly focused on the Internet and fixed networks. But the exponential growth and use of wireless technologies, coupled with their unprecedented characteristics, necessitates the development of new network forensic analysis tools. This dissertation fostered the emergence of a new research field in cellular and ad-hoc network forensics. It was one of the first works to identify this problem and offer fundamental techniques and tools that laid the groundwork for future research. In particular, it introduced novel methods to record network incidents and report logged incidents. For recording incidents, location is considered essential to documenting network incidents. However, in network topology spaces, location cannot be measured due to absence of a ‘distance metric’. Therefore, a novel solution was proposed to label locations of nodes within network topology spaces, and then to authenticate the identity of nodes in ad hoc environments. For reporting logged incidents, a novel technique based on Distributed Hash Tables (DHT) was adopted. Although the direct use of DHTs for reporting logged incidents would result in an uncontrollably recursive traffic, a new mechanism was introduced that overcome this recursive process. These logging and reporting techniques aided forensics over cellular and ad-hoc networks, which in turn increased their ability to track and trace attacks to their source. These techniques were a starting point for further research and development that would result in equipping future ad hoc networks with forensic components to complement existing security mechanisms.
Resumo:
Network simulation is an indispensable tool for studying Internet-scale networks due to the heterogeneous structure, immense size and changing properties. It is crucial for network simulators to generate representative traffic, which is necessary for effectively evaluating next-generation network protocols and applications. With network simulation, we can make a distinction between foreground traffic, which is generated by the target applications the researchers intend to study and therefore must be simulated with high fidelity, and background traffic, which represents the network traffic that is generated by other applications and does not require significant accuracy. The background traffic has a significant impact on the foreground traffic, since it competes with the foreground traffic for network resources and therefore can drastically affect the behavior of the applications that produce the foreground traffic. This dissertation aims to provide a solution to meaningfully generate background traffic in three aspects. First is realism. Realistic traffic characterization plays an important role in determining the correct outcome of the simulation studies. This work starts from enhancing an existing fluid background traffic model by removing its two unrealistic assumptions. The improved model can correctly reflect the network conditions in the reverse direction of the data traffic and can reproduce the traffic burstiness observed from measurements. Second is scalability. The trade-off between accuracy and scalability is a constant theme in background traffic modeling. This work presents a fast rate-based TCP (RTCP) traffic model, which originally used analytical models to represent TCP congestion control behavior. This model outperforms other existing traffic models in that it can correctly capture the overall TCP behavior and achieve a speedup of more than two orders of magnitude over the corresponding packet-oriented simulation. Third is network-wide traffic generation. Regardless of how detailed or scalable the models are, they mainly focus on how to generate traffic on one single link, which cannot be extended easily to studies of more complicated network scenarios. This work presents a cluster-based spatio-temporal background traffic generation model that considers spatial and temporal traffic characteristics as well as their correlations. The resulting model can be used effectively for the evaluation work in network studies.
Resumo:
The Internet has become an integral part of our nation's critical socio-economic infrastructure. With its heightened use and growing complexity however, organizations are at greater risk of cyber crimes. To aid in the investigation of crimes committed on or via the Internet, a network forensics analysis tool pulls together needed digital evidence. It provides a platform for performing deep network analysis by capturing, recording and analyzing network events to find out the source of a security attack or other information security incidents. Existing network forensics work has been mostly focused on the Internet and fixed networks. But the exponential growth and use of wireless technologies, coupled with their unprecedented characteristics, necessitates the development of new network forensic analysis tools. This dissertation fostered the emergence of a new research field in cellular and ad-hoc network forensics. It was one of the first works to identify this problem and offer fundamental techniques and tools that laid the groundwork for future research. In particular, it introduced novel methods to record network incidents and report logged incidents. For recording incidents, location is considered essential to documenting network incidents. However, in network topology spaces, location cannot be measured due to absence of a 'distance metric'. Therefore, a novel solution was proposed to label locations of nodes within network topology spaces, and then to authenticate the identity of nodes in ad hoc environments. For reporting logged incidents, a novel technique based on Distributed Hash Tables (DHT) was adopted. Although the direct use of DHTs for reporting logged incidents would result in an uncontrollably recursive traffic, a new mechanism was introduced that overcome this recursive process. These logging and reporting techniques aided forensics over cellular and ad-hoc networks, which in turn increased their ability to track and trace attacks to their source. These techniques were a starting point for further research and development that would result in equipping future ad hoc networks with forensic components to complement existing security mechanisms.
Resumo:
Network simulation is an indispensable tool for studying Internet-scale networks due to the heterogeneous structure, immense size and changing properties. It is crucial for network simulators to generate representative traffic, which is necessary for effectively evaluating next-generation network protocols and applications. With network simulation, we can make a distinction between foreground traffic, which is generated by the target applications the researchers intend to study and therefore must be simulated with high fidelity, and background traffic, which represents the network traffic that is generated by other applications and does not require significant accuracy. The background traffic has a significant impact on the foreground traffic, since it competes with the foreground traffic for network resources and therefore can drastically affect the behavior of the applications that produce the foreground traffic. This dissertation aims to provide a solution to meaningfully generate background traffic in three aspects. First is realism. Realistic traffic characterization plays an important role in determining the correct outcome of the simulation studies. This work starts from enhancing an existing fluid background traffic model by removing its two unrealistic assumptions. The improved model can correctly reflect the network conditions in the reverse direction of the data traffic and can reproduce the traffic burstiness observed from measurements. Second is scalability. The trade-off between accuracy and scalability is a constant theme in background traffic modeling. This work presents a fast rate-based TCP (RTCP) traffic model, which originally used analytical models to represent TCP congestion control behavior. This model outperforms other existing traffic models in that it can correctly capture the overall TCP behavior and achieve a speedup of more than two orders of magnitude over the corresponding packet-oriented simulation. Third is network-wide traffic generation. Regardless of how detailed or scalable the models are, they mainly focus on how to generate traffic on one single link, which cannot be extended easily to studies of more complicated network scenarios. This work presents a cluster-based spatio-temporal background traffic generation model that considers spatial and temporal traffic characteristics as well as their correlations. The resulting model can be used effectively for the evaluation work in network studies.
Resumo:
The necessity of elemental analysis techniques to solve forensic problems continues to expand as the samples collected from crime scenes grow in complexity. Laser ablation ICP-MS (LA-ICP-MS) has been shown to provide a high degree of discrimination between samples that originate from different sources. In the first part of this research, two laser ablation ICP-MS systems were compared, one using a nanosecond laser and another a femtosecond laser source for the forensic analysis of glass. The results showed that femtosecond LA-ICP-MS did not provide significant improvements in terms of accuracy, precision and discrimination, however femtosecond LA-ICP-MS did provide lower detection limits. In addition, it was determined that even for femtosecond LA-ICP-MS an internal standard should be utilized to obtain accurate analytical results for glass analyses. In the second part, a method using laser induced breakdown spectroscopy (LIBS) for the forensic analysis of glass was shown to provide excellent discrimination for a glass set consisting of 41 automotive fragments. The discrimination power was compared to two of the leading elemental analysis techniques, µXRF and LA-ICP-MS, and the results were similar; all methods generated >99% discrimination and the pairs found indistinguishable were similar. An extensive data analysis approach for LIBS glass analyses was developed to minimize Type I and II errors en route to a recommendation of 10 ratios to be used for glass comparisons. Finally, a LA-ICP-MS method for the qualitative analysis and discrimination of gel ink sources was developed and tested for a set of ink samples. In the first discrimination study, qualitative analysis was used to obtain 95.6% discrimination for a blind study consisting of 45 black gel ink samples provided by the United States Secret Service. A 0.4% false exclusion (Type I) error rate and a 3.9% false inclusion (Type II) error rate was obtained for this discrimination study. In the second discrimination study, 99% discrimination power was achieved for a black gel ink pen set consisting of 24 self collected samples. The two pairs found to be indistinguishable came from the same source of origin (the same manufacturer and type of pen purchased in different locations). It was also found that gel ink from the same pen, regardless of the age, was indistinguishable as were gel ink pens (four pens) originating from the same pack.
Resumo:
AIDS education is mandated in schools throughout the United States to educate students about the disease. Teachers are expected to assume the major role of disseminating this information; therefore it is reasonable to question how knowledgeable teachers are about HIV/AIDS and where their information is coming from. This study explored the knowledge and attitudes of general and special education teachers toward students with HIV/AIDS and investigated whether a relationship between knowledge and attitudes existed. Information was collected using the AIDS Knowledge and Attitude Survey (AKAS). The sample was limited to certified teachers resulting in 318 participants.^ Research questions were analyzed using descriptive statistics, frequencies, t-tests, one-way analysis of variance (ANOVA), Scheffe post hoc analysis, and Pearson Product-Moment Correlation. Results indicated that general and special education teachers did not have complete knowledge about HIV/AIDS. Participants were knowledgeable regarding modes of transmission which may be the area of greatest concern for teachers, however, deficiencies were present within teachers' knowledge of general statements and facts and pathology. Among the ten demographic variables analyzed, six (gender, race/ethnicity, level of education, certification, instructional level taught, and classroom AIDS instruction) contained statistical significance.^ Analysis of attitudes indicated that general and special education teachers' overall attitudes toward students with HIV/AIDS were generally positive within clusters of Instruction and Fear, but not within Sensitivity and Communication. Among the ten demographic variables used for analysis only three (age, graduate enrollment status, and classroom AIDS instruction) produced statistical significance. Results found statistically significant relationships between Total Knowledge, all knowledge subtests, Fear, and Overall Attitudes. Statistical significance was also located on Total Knowledge, Pathology and Transmission knowledge subtests, and Sensitivity, as well as between Pathology and Instruction, and General Statements and Facts and Communication.^ The only variable determined to have statistical significance on both knowledge and attitudes was classroom AIDS instruction. Participants with previous AIDS instruction showed greater knowledge and possessed more positive attitudes. A review of previous research indicated training to be effective in increasing knowledge and fostering more favorable behavior toward persons with AIDS. Therefore, this study finds AIDS training to be beneficial for all teachers and is recommended during preservice education or through inservices for teachers already in the field. ^
Resumo:
Athletic training is an allied health profession recognized by the American Medical Association requiring certification by examination. There are two routes towards certification as an athletic trainer: attending a university with an accredited athletic training program or with an internship program By 2004, the only route towards certification will be by attending a Commission on Accreditation of Allied Health Education Programs (CAAHEP) or National Athletic Trainers' Association (NATA) accredited athletic training program. CAAHEP looks at passing rates on the NATA Board of Certification (NATABOC) examination when granting accreditation. This study examined characteristics of programs associated with first time passing rates. ^ Directors from 39 CAAHEP or NATA accredited athletic training programs completed a descriptive 17-question survey regarding academic characteristics, faculty characteristics, and program characteristics. Analysis used Spearman's rho correlation coefficient, with significance of p = <.05. Four program directors were interviewed to gather additional insight. ^ There were three program characteristics that showed a significant positive association with first attempt passing rates: the number of full-time and part-time approved clinical instructors (ACIs), and the number of students in the program. Further investigation found a statistically significant association between a low ratio of ACIs to athletic training students and first time passing rates. ACIs are certified athletic trainers (ATCs) who have received special training in order to supervise athletic training students. CAAHEP mandates a 1:8 ratio of ATCs to athletic training student. This study showed that a smaller ratio of ATC to student in combination with ACI training was significantly associated with higher first time passing rates. The number of courses above the required 13 delineated by the Education Council showed a significant negative association with first attempt passing rates. ^ Universities seeking or maintaining accreditation should incorporate characteristics associated with a higher passing rate on the NATABOC examination. Characteristics include utilizing a large number of full-time and part-time ACIs, admitting a large number of students into the program while maintaining a low ACI to athletic training student ratio, and offering curricula that focuses on the 13 courses that have been deemed relevant to the athletic training curriculum by the Education Council. ^
Resumo:
This action research project will investigate the relationship between participation in extracurricular activities and academic achievement of students in the fourth grade. Students’ achievement scores on the FAIR exams will be the measure of academic success. Analysis will consist of a correlation between extracurricular activities and academic success.
Resumo:
With the growing commercial importance of the Internet and the development of new real-time, connection-oriented services like IP-telephony and electronic commerce resilience is becoming a key issue in the design of TP-based networks. Two emerging technologies, which can accomplish the task of efficient information transfer, are Multiprotocol Label Switching (MPLS) and Differentiated Services. A main benefit of MPLS is the ability to introduce traffic-engineering concepts due to its connection-oriented characteristic. With MPLS it is possible to assign different paths for packets through the network. Differentiated services divides traffic into different classes and treat them differently, especially when there is a shortage of network resources. In this thesis, a framework was proposed to integrate the above two technologies and its performance in providing load balancing and improving QoS was evaluated. Simulation and analysis of this framework demonstrated that the combination of MPLS and Differentiated services is a powerful tool for QoS provisioning in IP networks.
Resumo:
The total time a customer spends in the business process system, called the customer cycle-time, is a major contributor to overall customer satisfaction. Business process analysts and designers are frequently asked to design process solutions with optimal performance. Simulation models have been very popular to quantitatively evaluate the business processes; however, simulation is time-consuming and it also requires extensive modeling experiences to develop simulation models. Moreover, simulation models neither provide recommendations nor yield optimal solutions for business process design. A queueing network model is a good analytical approach toward business process analysis and design, and can provide a useful abstraction of a business process. However, the existing queueing network models were developed based on telephone systems or applied to manufacturing processes in which machine servers dominate the system. In a business process, the servers are usually people. The characteristics of human servers should be taken into account by the queueing model, i.e. specialization and coordination. ^ The research described in this dissertation develops an open queueing network model to do a quick analysis of business processes. Additionally, optimization models are developed to provide optimal business process designs. The queueing network model extends and improves upon existing multi-class open-queueing network models (MOQN) so that the customer flow in the human-server oriented processes can be modeled. The optimization models help business process designers to find the optimal design of a business process with consideration of specialization and coordination. ^ The main findings of the research are, first, parallelization can reduce the cycle-time for those customer classes that require more than one parallel activity; however, the coordination time due to the parallelization overwhelms the savings from parallelization under the high utilization servers since the waiting time significantly increases, thus the cycle-time increases. Third, the level of industrial technology employed by a company and coordination time to mange the tasks have strongest impact on the business process design; as the level of industrial technology employed by the company is high; more division is required to improve the cycle-time; as the coordination time required is high; consolidation is required to improve the cycle-time. ^
Resumo:
This dissertation establishes a novel data-driven method to identify language network activation patterns in pediatric epilepsy through the use of the Principal Component Analysis (PCA) on functional magnetic resonance imaging (fMRI). A total of 122 subjects’ data sets from five different hospitals were included in the study through a web-based repository site designed here at FIU. Research was conducted to evaluate different classification and clustering techniques in identifying hidden activation patterns and their associations with meaningful clinical variables. The results were assessed through agreement analysis with the conventional methods of lateralization index (LI) and visual rating. What is unique in this approach is the new mechanism designed for projecting language network patterns in the PCA-based decisional space. Synthetic activation maps were randomly generated from real data sets to uniquely establish nonlinear decision functions (NDF) which are then used to classify any new fMRI activation map into typical or atypical. The best nonlinear classifier was obtained on a 4D space with a complexity (nonlinearity) degree of 7. Based on the significant association of language dominance and intensities with the top eigenvectors of the PCA decisional space, a new algorithm was deployed to delineate primary cluster members without intensity normalization. In this case, three distinct activations patterns (groups) were identified (averaged kappa with rating 0.65, with LI 0.76) and were characterized by the regions of: (1) the left inferior frontal Gyrus (IFG) and left superior temporal gyrus (STG), considered typical for the language task; (2) the IFG, left mesial frontal lobe, right cerebellum regions, representing a variant left dominant pattern by higher activation; and (3) the right homologues of the first pattern in Broca's and Wernicke's language areas. Interestingly, group 2 was found to reflect a different language compensation mechanism than reorganization. Its high intensity activation suggests a possible remote effect on the right hemisphere focus on traditionally left-lateralized functions. In retrospect, this data-driven method provides new insights into mechanisms for brain compensation/reorganization and neural plasticity in pediatric epilepsy.
Resumo:
This dissertation establishes a novel data-driven method to identify language network activation patterns in pediatric epilepsy through the use of the Principal Component Analysis (PCA) on functional magnetic resonance imaging (fMRI). A total of 122 subjects’ data sets from five different hospitals were included in the study through a web-based repository site designed here at FIU. Research was conducted to evaluate different classification and clustering techniques in identifying hidden activation patterns and their associations with meaningful clinical variables. The results were assessed through agreement analysis with the conventional methods of lateralization index (LI) and visual rating. What is unique in this approach is the new mechanism designed for projecting language network patterns in the PCA-based decisional space. Synthetic activation maps were randomly generated from real data sets to uniquely establish nonlinear decision functions (NDF) which are then used to classify any new fMRI activation map into typical or atypical. The best nonlinear classifier was obtained on a 4D space with a complexity (nonlinearity) degree of 7. Based on the significant association of language dominance and intensities with the top eigenvectors of the PCA decisional space, a new algorithm was deployed to delineate primary cluster members without intensity normalization. In this case, three distinct activations patterns (groups) were identified (averaged kappa with rating 0.65, with LI 0.76) and were characterized by the regions of: 1) the left inferior frontal Gyrus (IFG) and left superior temporal gyrus (STG), considered typical for the language task; 2) the IFG, left mesial frontal lobe, right cerebellum regions, representing a variant left dominant pattern by higher activation; and 3) the right homologues of the first pattern in Broca's and Wernicke's language areas. Interestingly, group 2 was found to reflect a different language compensation mechanism than reorganization. Its high intensity activation suggests a possible remote effect on the right hemisphere focus on traditionally left-lateralized functions. In retrospect, this data-driven method provides new insights into mechanisms for brain compensation/reorganization and neural plasticity in pediatric epilepsy.
Resumo:
Small Arms and Light Weapons (SALW) proliferation was undertaken by the Non-Governmental Organizations (NGOs) as the next important issue in international relations after the success of the International Campaign to Ban Landmines (ICBL). This dissertation focuses on the reasons why the issue of SALW resulted in an Action Program rather than an international convention. Thus, this result was considered as unsuccessful by the advocates of regulating the illicit trade in SALW. The study provides a social movement theoretical approach, using framing, political opportunity and network analysis to explain why the advocates of regulating the illicit trade in SALW did no succeed in their goals. The UN is taken as the arena in which NGOs, States and International Governmental Organizations (IGOs) discussed the illicit trade in SALW. ^ The findings of the study indicate that the political opportunity for the issue of SALW was not ideal. The network of NGOs, States and IGOs was not strong. The NGOs advocating regulation of SALW were divided over the approach of the issue and were part of different coalitions with differing objectives. Despite initial widespread interest among States, only a couple of States were fully committed to the issue till the end. The regional IGOs approached the issue based on their regional priorities and were less interested in an international covenant. The advocates of regulating illicit trade in SALW attempted to frame SALW as a humanitarian issue rather than as a security issue. Thus they were not able to use frame alignment to convince states to treat SALW as a humanitarian issue. In conclusion it can be said that all three items, framing, political opportunity and the network, play a role in the lack of success of advocates for regulating the illicit trade in SALW. ^
Resumo:
This dissertation discussed resource allocation mechanisms in several network topologies including infrastructure wireless network, non-infrastructure wireless network and wire-cum-wireless network. Different networks may have different resource constrains. Based on actual technologies and implementation models, utility function, game theory and a modern control algorithm have been introduced to balance power, bandwidth and customers' satisfaction in the system. ^ In infrastructure wireless networks, utility function was used in the Third Generation (3G) cellular network and the network was trying to maximize the total utility. In this dissertation, revenue maximization was set as an objective. Compared with the previous work on utility maximization, it is more practical to implement revenue maximization by the cellular network operators. The pricing strategies were studied and the algorithms were given to find the optimal price combination of power and rate to maximize the profit without degrading the Quality of Service (QoS) performance. ^ In non-infrastructure wireless networks, power capacity is limited by the small size of the nodes. In such a network, nodes need to transmit traffic not only for themselves but also for their neighbors, so power management become the most important issue for the network overall performance. Our innovative routing algorithm based on utility function, sets up a flexible framework for different users with different concerns in the same network. This algorithm allows users to make trade offs between multiple resource parameters. Its flexibility makes it a suitable solution for the large scale non-infrastructure network. This dissertation also covers non-cooperation problems. Through combining game theory and utility function, equilibrium points could be found among rational users which can enhance the cooperation in the network. ^ Finally, a wire-cum-wireless network architecture was introduced. This network architecture can support multiple services over multiple networks with smart resource allocation methods. Although a SONET-to-WiMAX case was used for the analysis, the mathematic procedure and resource allocation scheme could be universal solutions for all infrastructure, non-infrastructure and combined networks. ^
Resumo:
Next generation networks are characterized by ever increasing complexity, intelligence, heterogeneous technologies and increasing user expectations. Telecommunication networks in particular have become truly global, consisting of a variety of national and regional networks, both wired and wireless. Consequently, the management of telecommunication networks is becoming increasingly complex. In addition, network security and reliability requirements require additional overheads which increase the size of the data records. This in turn causes acute network traffic congestions. There is no single network management methodology to control the various requirements of today's networks, and provides a good level of Quality of Service (QoS), and network security. Therefore, an integrated approach is needed in which a combination of methodologies can provide solutions and answers to network events (which cause severe congestions and compromise the quality of service and security). The proposed solution focused on a systematic approach to design a network management system based upon the recent advances in the mobile agent technologies. This solution has provided a new traffic management system for telecommunication networks that is capable of (1) reducing the network traffic load (thus reducing traffic congestion), (2) overcoming existing network latency, (3) adapting dynamically to the traffic load of the system, (4) operating in heterogeneous environments with improved security, and (5) having robust and fault tolerance behavior. This solution has solved several key challenges in the development of network management for telecommunication networks using mobile agents. We have designed several types of agents, whose interactions will allow performing some complex management actions, and integrating them. Our solution is decentralized to eliminate excessive bandwidth usage and at the same time has extended the capabilities of the Simple Network Management Protocol (SNMP). Our solution is fully compatible with the existing standards.