5 resultados para Tissue Culture
em Digital Commons at Florida International University
Resumo:
Heart valve disease occurs in adults as well as in pediatric population due to age-related changes, rheumatic fever, infection or congenital condition. Current treatment options are limited to mechanical heart valve (MHV) or bio-prosthetic heart valve (BHV) replacements. Lifelong anti-coagulant medication in case of MHV and calcification, durability in case of BHV are major setbacks for both treatments. Lack of somatic growth of these implants require multiple surgical interventions in case of pediatric patients. Advent of stem cell research and regenerative therapy propose an alternative and potential tissue engineered heart valves (TEHV) treatment approach to treat this life threatening condition. TEHV has the potential to promote tissue growth by replacing and regenerating a functional native valve. Hemodynamics play a crucial role in heart valve tissue formation and sustained performance. The focus of this study was to understand the role of physiological shear stress and flexure effects on de novo HV tissue formation as well as resulting gene and protein expression. A bioreactor system was used to generate physiological shear stress and cyclic flexure. Human bone marrow mesenchymal stem cell derived tissue constructs were exposed to native valve-like physiological condition. Responses of these tissue constructs to the valve-relevant stress states along with gene and protein expression were investigated after 22 days of tissue culture. We conclude that the combination of steady flow and cyclic flexure helps support engineered tissue formation by the co-existence of both OSS and appreciable shear stress magnitudes, and potentially augment valvular gene and protein expression when both parameters are in the physiological range.
Resumo:
Heart valve disease occurs in adults as well as in pediatric population due to age-related changes, rheumatic fever, infection or congenital condition. Current treatment options are limited to mechanical heart valve (MHV) or bio-prosthetic heart valve (BHV) replacements. Lifelong anti-coagulant medication in case of MHV and calcification, durability in case of BHV are major setbacks for both treatments. Lack of somatic growth of these implants require multiple surgical interventions in case of pediatric patients. Advent of stem cell research and regenerative therapy propose an alternative and potential tissue engineered heart valves (TEHV) treatment approach to treat this life threatening condition. TEHV has the potential to promote tissue growth by replacing and regenerating a functional native valve. Hemodynamics play a crucial role in heart valve tissue formation and sustained performance. The focus of this study was to understand the role of physiological shear stress and flexure effects on de novo HV tissue formation as well as resulting gene and protein expression. A bioreactor system was used to generate physiological shear stress and cyclic flexure. Human bone marrow mesenchymal stem cell derived tissue constructs were exposed to native valve-like physiological condition. Responses of these tissue constructs to the valve-relevant stress states along with gene and protein expression were investigated after 22 days of tissue culture. We conclude that the combination of steady flow and cyclic flexure helps support engineered tissue formation by the co-existence of both OSS and appreciable shear stress magnitudes, and potentially augment valvular gene and protein expression when both parameters are in the physiological range. ^
Resumo:
This dissertation evaluated the feasibility of using commercially available immortalized cell lines in building a tissue engineered in vitro blood-brain barrier (BBB) co-culture model for preliminary drug development studies. Mouse endothelial cell line and rat astrocyte cell lines purchased from American Type Culture Collections (ATCC) were the building blocks of the co-culture model. An astrocyte derived acellular extracellular matrix (aECM) was introduced in the co-culture model to provide a novel in vitro biomimetic basement membrane for the endothelial cells to form endothelial tight junctions. Trans-endothelial electrical resistance (TEER) and solute mass transport studies were engaged to quantitatively evaluate the tight junction formation on the in-vitro BBB models. Immuno-fluorescence microscopy and Western Blot analysis were used to qualitatively verify the in vitro expression of occludin, one of the earliest discovered tight junction proteins. Experimental data from a total of 12 experiments conclusively showed that the novel BBB in vitro co-culture model with the astrocyte derived aECM (CO+aECM) was promising in terms of establishing tight junction formation represented by TEER values, transport profiles and tight junction protein expression when compared with traditional co-culture (CO) model setups and endothelial cells cultured alone. Experimental data were also found to be comparable with several existing in vitro BBB models built from various methods. In vitro colorimetric sulforhodamine B (SRB) assay revealed that the co-cultured samples with aECM resulted in less cell loss on the basal sides of the insert membranes than that from traditional co-culture samples. The novel tissue engineering approach using immortalized cell lines with the addition of aECM was proven to be a relevant alternative to the traditional BBB in vitro modeling.
Resumo:
Articular cartilage injuries occur frequently in the knee joint. Several methods have been implemented clinically, to treat osteochondral defects but none have been able to produce a long term, durable solution. Photopolymerizable cartilage tissue engineering approaches appear promising; however, fundamentally, forming a stable interface between the tissue engineered cartilage and native tissue, mainly subchondral bone and native cartilage, remains a major challenge. The overall objective of this research is to find a solution for the current problem of dislodgment of tissue engineered cartilage at the defect site for the treatment of degraded cartilage that has been caused due to knee injuries or because of mild to moderate level of osteoarthritis. For this, an in-vitro model was created to analyze the integration of tissue engineered cartilage with the bone, healthy and diseased cartilage over time. We investigated the utility of hydroxyapatite (HA) nanoparticles to promote controlled bone-growth across the bone-cartilage interface in an in vitro engineered tissue model system using bone marrow derived stem cells. We also investigated the application of HA nanoparticles to promote enhance integration between tissue engineered cartilage and native cartilage both in healthy and diseased states. Samples incorporated with HA demonstrated significantly higher interfacial shear strength (at the junction between engineered cartilage and engineered bone and also with diseased cartilage) compared to the constructs without HA (p < 0.05), after 28 days of culture. These findings indicate that the incorporation of HA nanoparticles permits more stable anchorage of the injectable hydrogel-based engineered cartilage construct via augmented integration between bone and cartilage.^
Resumo:
Characterizing engineered human lung tissue is an important step in developing a functional tissue replacement for lung tissue repair and in vitro analysis. Small tissue constructs were grown by seeding IMR-90 fetal lung fibroblasts and adult microvascular endothelial cells onto a Polyglycolic acid (PGA) polymer template. Introducing the constructs to dynamic culture conditions inside a bioreactor facilitated three-dimensional growth seen in scanning electron microscopy images (SEM). Characterization of the resultant tissue samples was done using SEM imagery, tensile tests, and biochemical assays to quantify extra-cellular matrix (ECM) composition. Tensile tests of the engineered samples indicated an increase in the mechanical properties when compared with blank constructs. Elastin and collagen content was found to average 3.19% and 15.49% respectively in relation to total mass of the tissue samples. The presence of elastin and collagen within the constructs most likely explains the mechanical differences that we noted. These findings suggest that the necessary ECM can be established in engineered tissue constructs and that optimization of this procedure has the capacity to generate the load bearing elements required for construction of a functional lung tissue equivalent.