9 resultados para Timed and Probabilistic Automata

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pesticide monitoring in St. Lucie County by various local, state and federal agencies has indicated consistent residues of several pesticides, including ethion and bromacil. Although pesticides have long been known to pose a threat to non-target species and much background monitoring has been done, no pesticide aquatic risk assessment has been done in this geographical area. Several recognized United States Environmental Protection Agency (USEPA) methods of quantifying risk are employed here to include hazard quotients (HQ) and probabilistic modeling with sensitivity analysis. These methods are employed to characterize potential impacts to aquatic biota of the C-25 Canal and the Indian River Lagoon (in St. Lucie County, Florida) based on current agricultural pesticide use and drainage patterns. The model used in the analysis incorporates available physical-chemical property data, local hydrology, ecosystem information, and pesticide use practices. HQ's, probabilistic distributions, and field sample analyses resulted in high levels of concern (LOCs), which usually indicates a need for regulatory action, including restrictions on use, or cancellation. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Limited literature exists on Ghana's child domestic servants, and researchers have found it difficult to locate and study these children. The research for this dissertation used qualitative research methodologies and non-probabilistic sampling techniques to make it possible to interview child domestic servants, their parents, employers and recruiters in Ghana. The findings from the qualitative analyses informed the second part of this study, which was quantitative and tested hypotheses using crosstabulations and logistic regression analyses that were based on survey data from the Ghana Statistical Service. Explanatory variables in the quantitative analyses included lineage, level of education and relationships to the household head. ^ This study located findings about the processes of children's recruitment into domestic servitude, their working conditions and methods of remuneration in theories of slavery to answer the question of whether or not child domestic servants are slaves. According to the findings, elite households in Ghana exploit children from rural regions because they have taken advantage of a historical practice that allowed children to live with older members of their extended families to provide domestic services and in return, be given the chance to receive formal education or to learn a trade. The participants in the qualitative part of this research described the treatments that they receive from their employers as slavery. Nevertheless, the processes of their recruitment and the age at which most of them accepted such job offers made it difficult to categorize a majority of them as contemporary slaves. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the 1950s, the theory of deterministic and nondeterministic finite automata (DFAs and NFAs, respectively) has been a cornerstone of theoretical computer science. In this dissertation, our main object of study is minimal NFAs. In contrast with minimal DFAs, minimal NFAs are computationally challenging: first, there can be more than one minimal NFA recognizing a given language; second, the problem of converting an NFA to a minimal equivalent NFA is NP-hard, even for NFAs over a unary alphabet. Our study is based on the development of two main theories, inductive bases and partials, which in combination form the foundation for an incremental algorithm, ibas, to find minimal NFAs. An inductive basis is a collection of languages with the property that it can generate (through union) each of the left quotients of its elements. We prove a fundamental characterization theorem which says that a language can be recognized by an n-state NFA if and only if it can be generated by an n-element inductive basis. A partial is an incompletely-specified language. We say that an NFA recognizes a partial if its language extends the partial, meaning that the NFA’s behavior is unconstrained on unspecified strings; it follows that a minimal NFA for a partial is also minimal for its language. We therefore direct our attention to minimal NFAs recognizing a given partial. Combining inductive bases and partials, we generalize our characterization theorem, showing that a partial can be recognized by an n-state NFA if and only if it can be generated by an n-element partial inductive basis. We apply our theory to develop and implement ibas, an incremental algorithm that finds minimal partial inductive bases generating a given partial. In the case of unary languages, ibas can often find minimal NFAs of up to 10 states in about an hour of computing time; with brute-force search this would require many trillions of years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The primary goal of this dissertation is to develop point-based rigid and non-rigid image registration methods that have better accuracy than existing methods. We first present point-based PoIRe, which provides the framework for point-based global rigid registrations. It allows a choice of different search strategies including (a) branch-and-bound, (b) probabilistic hill-climbing, and (c) a novel hybrid method that takes advantage of the best characteristics of the other two methods. We use a robust similarity measure that is insensitive to noise, which is often introduced during feature extraction. We show the robustness of PoIRe using it to register images obtained with an electronic portal imaging device (EPID), which have large amounts of scatter and low contrast. To evaluate PoIRe we used (a) simulated images and (b) images with fiducial markers; PoIRe was extensively tested with 2D EPID images and images generated by 3D Computer Tomography (CT) and Magnetic Resonance (MR) images. PoIRe was also evaluated using benchmark data sets from the blind retrospective evaluation project (RIRE). We show that PoIRe is better than existing methods such as Iterative Closest Point (ICP) and methods based on mutual information. We also present a novel point-based local non-rigid shape registration algorithm. We extend the robust similarity measure used in PoIRe to non-rigid registrations adapting it to a free form deformation (FFD) model and making it robust to local minima, which is a drawback common to existing non-rigid point-based methods. For non-rigid registrations we show that it performs better than existing methods and that is less sensitive to starting conditions. We test our non-rigid registration method using available benchmark data sets for shape registration. Finally, we also explore the extraction of features invariant to changes in perspective and illumination, and explore how they can help improve the accuracy of multi-modal registration. For multimodal registration of EPID-DRR images we present a method based on a local descriptor defined by a vector of complex responses to a circular Gabor filter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Type systems for secure information flow aim to prevent a program from leaking information from H (high) to L (low) variables. Traditionally, bisimulation has been the prevalent technique for proving the soundness of such systems. This work introduces a new proof technique based on stripping and fast simulation, and shows that it can be applied in a number of cases where bisimulation fails. We present a progressive development of this technique over a representative sample of languages including a simple imperative language (core theory), a multiprocessing nondeterministic language, a probabilistic language, and a language with cryptographic primitives. In the core theory we illustrate the key concepts of this technique in a basic setting. A fast low simulation in the context of transition systems is a binary relation where simulating states can match the moves of simulated states while maintaining the equivalence of low variables; stripping is a function that removes high commands from programs. We show that we can prove secure information flow by arguing that the stripping relation is a fast low simulation. We then extend the core theory to an abstract distributed language under a nondeterministic scheduler. Next, we extend to a probabilistic language with a random assignment command; we generalize fast simulation to the setting of discrete time Markov Chains, and prove approximate probabilistic noninterference. Finally, we introduce cryptographic primitives into the probabilistic language and prove computational noninterference, provided that the underling encryption scheme is secure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Urban growth models have been used for decades to forecast urban development in metropolitan areas. Since the 1990s cellular automata, with simple computational rules and an explicitly spatial architecture, have been heavily utilized in this endeavor. One such cellular-automata-based model, SLEUTH, has been successfully applied around the world to better understand and forecast not only urban growth but also other forms of land-use and land-cover change, but like other models must be fed important information about which particular lands in the modeled area are available for development. Some of these lands are in categories for the purpose of excluding urban growth that are difficult to quantify since their function is dictated by policy. One such category includes voluntary differential assessment programs, whereby farmers agree not to develop their lands in exchange for significant tax breaks. Since they are voluntary, today’s excluded lands may be available for development at some point in the future. Mapping the shifting mosaic of parcels that are enrolled in such programs allows this information to be used in modeling and forecasting. In this study, we added information about California’s Williamson Act into SLEUTH’s excluded layer for Tulare County. Assumptions about the voluntary differential assessments were used to create a sophisticated excluded layer that was fed into SLEUTH’s urban growth forecasting routine. The results demonstrate not only a successful execution of this method but also yielded high goodness-of-fit metrics for both the calibration of enrollment termination as well as the urban growth modeling itself.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the 1950s, the theory of deterministic and nondeterministic finite automata (DFAs and NFAs, respectively) has been a cornerstone of theoretical computer science. In this dissertation, our main object of study is minimal NFAs. In contrast with minimal DFAs, minimal NFAs are computationally challenging: first, there can be more than one minimal NFA recognizing a given language; second, the problem of converting an NFA to a minimal equivalent NFA is NP-hard, even for NFAs over a unary alphabet. Our study is based on the development of two main theories, inductive bases and partials, which in combination form the foundation for an incremental algorithm, ibas, to find minimal NFAs. An inductive basis is a collection of languages with the property that it can generate (through union) each of the left quotients of its elements. We prove a fundamental characterization theorem which says that a language can be recognized by an n-state NFA if and only if it can be generated by an n-element inductive basis. A partial is an incompletely-specified language. We say that an NFA recognizes a partial if its language extends the partial, meaning that the NFA's behavior is unconstrained on unspecified strings; it follows that a minimal NFA for a partial is also minimal for its language. We therefore direct our attention to minimal NFAs recognizing a given partial. Combining inductive bases and partials, we generalize our characterization theorem, showing that a partial can be recognized by an n-state NFA if and only if it can be generated by an n-element partial inductive basis. We apply our theory to develop and implement ibas, an incremental algorithm that finds minimal partial inductive bases generating a given partial. In the case of unary languages, ibas can often find minimal NFAs of up to 10 states in about an hour of computing time; with brute-force search this would require many trillions of years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The primary goal of this dissertation is to develop point-based rigid and non-rigid image registration methods that have better accuracy than existing methods. We first present point-based PoIRe, which provides the framework for point-based global rigid registrations. It allows a choice of different search strategies including (a) branch-and-bound, (b) probabilistic hill-climbing, and (c) a novel hybrid method that takes advantage of the best characteristics of the other two methods. We use a robust similarity measure that is insensitive to noise, which is often introduced during feature extraction. We show the robustness of PoIRe using it to register images obtained with an electronic portal imaging device (EPID), which have large amounts of scatter and low contrast. To evaluate PoIRe we used (a) simulated images and (b) images with fiducial markers; PoIRe was extensively tested with 2D EPID images and images generated by 3D Computer Tomography (CT) and Magnetic Resonance (MR) images. PoIRe was also evaluated using benchmark data sets from the blind retrospective evaluation project (RIRE). We show that PoIRe is better than existing methods such as Iterative Closest Point (ICP) and methods based on mutual information. We also present a novel point-based local non-rigid shape registration algorithm. We extend the robust similarity measure used in PoIRe to non-rigid registrations adapting it to a free form deformation (FFD) model and making it robust to local minima, which is a drawback common to existing non-rigid point-based methods. For non-rigid registrations we show that it performs better than existing methods and that is less sensitive to starting conditions. We test our non-rigid registration method using available benchmark data sets for shape registration. Finally, we also explore the extraction of features invariant to changes in perspective and illumination, and explore how they can help improve the accuracy of multi-modal registration. For multimodal registration of EPID-DRR images we present a method based on a local descriptor defined by a vector of complex responses to a circular Gabor filter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

From a sociocultural perspective, individuals learn best from contextualized experiences. In preservice teacher education, contextualized experiences include authentic literacy experiences, which include a real reader and writer and replicate real life communication. To be prepared to teach well, preservice teachers need to gain literacy content knowledge and possess reading maturity. The purpose of this study was to examine the effect of authentic literacy experiences as Book Buddies with Hispanic fourth graders on preservice teachers’ literacy content knowledge and reading maturity. The study was a pretest/posttest design conducted over 12 weeks. Preservice teacher participants, the focus of the study, were elementary education majors taking the third of four required reading courses in non-probabilistic convenience groups, 43 (n = 33 experimental, n = 10 comparison) Elementary Education majors. The Survey of Preservice Teachers’ Knowledge of Teaching and Technology (SPTKTT), specifically designed for preservice teachers majoring in elementary or early childhood education and the Reading Maturity Survey (RMS) were used in this study. Preservice teachers chose either the experimental or comparison group based on the opportunity to earn extra credit points (experimental = 30 points, comparison = 15). After exchanging introductory letters preservice teachers and Hispanic fourth graders each read four books. After reading each book preservice teachers wrote letters to their student asking higher order thinking questions. Preservice teachers received scanned copies of their student’s unedited letters via email which enabled them to see their student’s authentic answers and writing levels. A series of analyses of covariance were used to determine whether there were significant differences in the dependent variables between the experimental and comparison groups. This quasi-experimental study tested two hypotheses. Using the appropriate pretest scores as covariates for adjusting the posttest means of the subcategory Literacy Content Knowledge (LCK), of the SPTKTT and the RMS, the mean adjusted posttest scores from the experimental group and comparison group were compared. No significant differences were found on the LCK dependent variable using the .05 level of significance, which may be due to Type II error caused by the small sample size. Significant differences were found on RMS using the .05 level of significance.