4 resultados para Time weight

em Digital Commons at Florida International University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The United States has over 4 million births annually. Currently healthy women with non-complicated deliveries receive little to no routine postpartum support when discharged from the hospital. This is especially problematic if mothers are first time mothers, poor, have language barriers and little to no social support after giving birth. The purpose of this randomized clinical trial was to compare maternal and infant health outcomes, and health care charges between 2 groups of mothers and newborns. A control ( n = 69) group received routine posthospital discharge care. An intervention group (n = 70) received routine posthospital discharge care plus follow up telephone calls by advanced practice nurses (APNs) on days 3,7,14,21,28 and week 8. Both groups were followed for the first 8 weeks posthospital discharge following delivery to examine maternal health outcomes (perceived maternal stress, social support and perceived maternal physical health), infant health outcomes (routine medical follow up visits immunizations, weight gain), morbidity (urgent care visits, emergency room visits, rehospitalizations), health care charges (urgent care visits, emergency room visits, rehospitalizations) in both groups and charges for APN follow up in the intervention group only. Data were analyzed using descriptive statistics and two-sample t-tests. Study findings indicated that intervention group had significantly lower perceived maternal stress, significantly higher rating of perceived maternal health and higher levels of social support and by the end of the 2nd month posthospital discharge compared to control group mothers. Infants in the intervention group had: increased number of immunizations; fewer emergency room visits; and 1 infant rehospitalization compared to 3 infant rehospitalizations in the control group. The intervention groups' health care charges were significantly lower compared to the control group $14,333/$497 vs. $70,834/$1,068. These study results indicate that an intervention of APN follow up telephone calls in this sample of first time low-income culturally diverse mothers was an effective, safe, low cost, easy to apply intervention which improved mothers' and infants' health outcomes and reduced healthcare charges.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Catering to society's demand for high performance computing, billions of transistors are now integrated on IC chips to deliver unprecedented performances. With increasing transistor density, the power consumption/density is growing exponentially. The increasing power consumption directly translates to the high chip temperature, which not only raises the packaging/cooling costs, but also degrades the performance/reliability and life span of the computing systems. Moreover, high chip temperature also greatly increases the leakage power consumption, which is becoming more and more significant with the continuous scaling of the transistor size. As the semiconductor industry continues to evolve, power and thermal challenges have become the most critical challenges in the design of new generations of computing systems. ^ In this dissertation, we addressed the power/thermal issues from the system-level perspective. Specifically, we sought to employ real-time scheduling methods to optimize the power/thermal efficiency of the real-time computing systems, with leakage/ temperature dependency taken into consideration. In our research, we first explored the fundamental principles on how to employ dynamic voltage scaling (DVS) techniques to reduce the peak operating temperature when running a real-time application on a single core platform. We further proposed a novel real-time scheduling method, “M-Oscillations” to reduce the peak temperature when scheduling a hard real-time periodic task set. We also developed three checking methods to guarantee the feasibility of a periodic real-time schedule under peak temperature constraint. We further extended our research from single core platform to multi-core platform. We investigated the energy estimation problem on the multi-core platforms and developed a light weight and accurate method to calculate the energy consumption for a given voltage schedule on a multi-core platform. Finally, we concluded the dissertation with elaborated discussions of future extensions of our research. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, polynomial phase modulation (PPM) was shown to be a power- and bandwidth-efficient modulation format. These two characteristics are in high demand nowadays specially in mobile applications, where devices with size, weight, and power (SWaP) constraints are common. In this paper, we propose implementing a full-diversity quasiorthogonal space-time block code (QOSTBC) using polynomial phase signals as modulation format. QOSTBCs along with PPM are used in order to improve the power efficiency of communication systems with four transmit antennas. We obtain the optimal PPM constellations that ensure full diversity and maximize the QOSTBC's minimum coding gain distance. Simulation results show that by using QOSTBCs along with a properly selected PPM constellation, full diversity in flat fading channels and thus low BER at high signal-to-noise ratios (SNR) can be ensured. More importantly, it is also shown that QOSTBCs using PPM achieve a better error performance than those using conventional modulation formats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Catering to society’s demand for high performance computing, billions of transistors are now integrated on IC chips to deliver unprecedented performances. With increasing transistor density, the power consumption/density is growing exponentially. The increasing power consumption directly translates to the high chip temperature, which not only raises the packaging/cooling costs, but also degrades the performance/reliability and life span of the computing systems. Moreover, high chip temperature also greatly increases the leakage power consumption, which is becoming more and more significant with the continuous scaling of the transistor size. As the semiconductor industry continues to evolve, power and thermal challenges have become the most critical challenges in the design of new generations of computing systems. In this dissertation, we addressed the power/thermal issues from the system-level perspective. Specifically, we sought to employ real-time scheduling methods to optimize the power/thermal efficiency of the real-time computing systems, with leakage/ temperature dependency taken into consideration. In our research, we first explored the fundamental principles on how to employ dynamic voltage scaling (DVS) techniques to reduce the peak operating temperature when running a real-time application on a single core platform. We further proposed a novel real-time scheduling method, “M-Oscillations” to reduce the peak temperature when scheduling a hard real-time periodic task set. We also developed three checking methods to guarantee the feasibility of a periodic real-time schedule under peak temperature constraint. We further extended our research from single core platform to multi-core platform. We investigated the energy estimation problem on the multi-core platforms and developed a light weight and accurate method to calculate the energy consumption for a given voltage schedule on a multi-core platform. Finally, we concluded the dissertation with elaborated discussions of future extensions of our research.