7 resultados para Time analysis

em Digital Commons at Florida International University


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Knowledge of cell electronics has led to their integration to medicine either by physically interfacing electronic devices with biological systems or by using electronics for both detection and characterization of biological materials. In this dissertation, an electrical impedance sensor (EIS) was used to measure the electrode surface impedance changes from cell samples of human and environmental toxicity of nanoscale materials in 2D and 3D cell culture models. The impedimetric response of human lung fibroblasts and rainbow trout gill epithelial cells when exposed to various nanomaterials was tested to determine their kinetic effects towards the cells and to demonstrate the biosensor's ability to monitor nanotoxicity in real-time. Further, the EIS allowed rapid, real-time and multi-sample analysis creating a versatile, noninvasive tool that is able to provide quantitative information with respect to alteration in cellular function. We then extended the application of the unique capabilities of the EIS to do real-time analysis of cancer cell response to externally applied alternating electric fields at different intermediate frequencies and low-intensity. Decreases in the growth profiles of the ovarian and breast cancer cells were observed with the application of 200 and 100 kHz, respectively, indicating specific inhibitory effects on dividing cells in culture in contrast to the non-cancerous HUVECs and mammary epithelial cells. We then sought to enhance the effects of the electric field by altering the cancer cell's electronegative membrane properties with HER2 antibody functionalized nanoparticles. An Annexin V/EthD-III assay and zeta potential were performed to determine the cell death mechanism indicating apoptosis and a decrease in zeta potential with the incorporation of the nanoparticles. With more negatively charged HER2-AuNPs attached to the cancer cell membrane, the decrease in membrane potential would thus leave the cells more vulnerable to the detrimental effects of the applied electric field due to the decrease in surface charge. Therefore, by altering the cell membrane potential, one could possibly control the fate of the cell. This whole cell-based biosensor will enhance our understanding of the responsiveness of cancer cells to electric field therapy and demonstrate potential therapeutic opportunities for electric field therapy in the treatment of cancer.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Knowledge of cell electronics has led to their integration to medicine either by physically interfacing electronic devices with biological systems or by using electronics for both detection and characterization of biological materials. In this dissertation, an electrical impedance sensor (EIS) was used to measure the electrode surface impedance changes from cell samples of human and environmental toxicity of nanoscale materials in 2D and 3D cell culture models. The impedimetric response of human lung fibroblasts and rainbow trout gill epithelial cells when exposed to various nanomaterials was tested to determine their kinetic effects towards the cells and to demonstrate the biosensor’s ability to monitor nanotoxicity in real-time. Further, the EIS allowed rapid, real-time and multi-sample analysis creating a versatile, noninvasive tool that is able to provide quantitative information with respect to alteration in cellular function. We then extended the application of the unique capabilities of the EIS to do real-time analysis of cancer cell response to externally applied alternating electric fields at different intermediate frequencies and low-intensity. Decreases in the growth profiles of the ovarian and breast cancer cells were observed with the application of 200 and 100 kHz, respectively, indicating specific inhibitory effects on dividing cells in culture in contrast to the non-cancerous HUVECs and mammary epithelial cells. We then sought to enhance the effects of the electric field by altering the cancer cell’s electronegative membrane properties with HER2 antibody functionalized nanoparticles. An Annexin V/EthD-III assay and zeta potential were performed to determine the cell death mechanism indicating apoptosis and a decrease in zeta potential with the incorporation of the nanoparticles. With more negatively charged HER2-AuNPs attached to the cancer cell membrane, the decrease in membrane potential would thus leave the cells more vulnerable to the detrimental effects of the applied electric field due to the decrease in surface charge. Therefore, by altering the cell membrane potential, one could possibly control the fate of the cell. This whole cell-based biosensor will enhance our understanding of the responsiveness of cancer cells to electric field therapy and demonstrate potential therapeutic opportunities for electric field therapy in the treatment of cancer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The financial community is well aware that continued underfunding of state and local government pension plans poses many public policy and fiduciary management concerns. However, a well-defined theoretical rationale has not been developed to explain why and how public sector pension plans underfund. This study uses three methods: a survey of national pension experts, an incomplete covariance panel method, and field interviews.^ A survey of national public sector pension experts was conducted to provide a conceptual framework by which underfunding could be evaluated. Experts suggest that plan design, fiscal stress, and political culture factors impact underfunding. However, experts do not agree with previous research findings that unions actively pursue underfunding to secure current wage increases.^ Within the conceptual framework and determinants identified by experts, several empirical regularities are documented for the first time. Analysis of 173 local government pension plans, observed from 1987 to 1992, was conducted. Findings indicate that underfunding occurs in plans that have lower retirement ages, increased costs due to benefit enhancements, when the sponsor faces current year operating deficits, or when a local government relies heavily on inelastic revenue sources. Results also suggest that elected officials artificially inflate interest rate assumptions to reduce current pension costs, consequently shifting these costs to future generations. In concurrence with some experts there is no data to support the assumption that highly unionized employees secure more funding than less unionized employees.^ Empirical results provide satisfactory but not overwhelming statistical power, and only minor predictive capacity. To further explore why underfunding occurs, field interviews were carried out with 62 local government officials. Practitioners indicated that perceived fiscal stress, the willingness of policymakers to advance funding, bargaining strategies used by union officials, apathy by employees and retirees, pension board composition, and the level of influence by internal pension experts has an impact on funding outcomes.^ A pension funding process model was posited by triangulating the expert survey, empirical findings, and field survey results. The funding process model should help shape and refine our theoretical knowledge of state and local government pension underfunding in the future. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background The infraorder Anomura has long captivated the attention of evolutionary biologists due to its impressive morphological diversity and ecological adaptations. To date, 2500 extant species have been described but phylogenetic relationships at high taxonomic levels remain unresolved. Here, we reconstruct the evolutionary history—phylogeny, divergence times, character evolution and diversification—of this speciose clade. For this purpose, we sequenced two mitochondrial (16S and 12S) and three nuclear (H3, 18S and 28S) markers for 19 of the 20 extant families, using traditional Sanger and next-generation 454 sequencing methods. Molecular data were combined with 156 morphological characters in order to estimate the largest anomuran phylogeny to date. The anomuran fossil record allowed us to incorporate 31 fossils for divergence time analyses. Results Our best phylogenetic hypothesis (morphological + molecular data) supports most anomuran superfamilies and families as monophyletic. However, three families and eleven genera are recovered as para- and polyphyletic. Divergence time analysis dates the origin of Anomura to the Late Permian ~259 (224–296) MYA with many of the present day families radiating during the Jurassic and Early Cretaceous. Ancestral state reconstruction suggests that carcinization occurred independently 3 times within the group. The invasion of freshwater and terrestrial environments both occurred between the Late Cretaceous and Tertiary. Diversification analyses found the speciation rate to be low across Anomura, and we identify 2 major changes in the tempo of diversification; the most significant at the base of a clade that includes the squat-lobster family Chirostylidae. Conclusions Our findings are compared against current classifications and previous hypotheses of anomuran relationships. Many families and genera appear to be poly- or paraphyletic suggesting a need for further taxonomic revisions at these levels. A divergence time analysis provides key insights into the origins of major lineages and events and the timing of morphological (body form) and ecological (habitat) transitions. Living anomuran biodiversity is the product of 2 major changes in the tempo of diversification; our initial insights suggest that the acquisition of a crab-like form did not act as a key innovation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Taiwan's technical vocational educational system includes three levels: (1) institutes of technology (two and four year programs), (2) junior colleges (two, three and five year programs), and (3) senior vocational schools. Two-year junior colleges enroll their students through two channels: (1) based on results of the Particular Screening Entrance Examination (PSEE), (2) based on the Joint College Entrance Examination (JCEE). The PSEE has two categories: Category I includes on-time graduates with excellent performance, which means that they are within the top ten of their classes; Category II students include award-winning students in talent contests who have achieved a minimum grade point average of 75%. The JCEE is a regular entrance examination given to any senior vocation school graduate.^ Basic courses have a great impact on the students' academic performance. The purpose of the study was to focus on the effectiveness of teaching mathematics in two-year junior colleges and to analyze and correlate the results of two-year junior college students' performance in calculus and on-time graduation. The target group consisted of 521 students enrolled at National Taipei Institute of Technology in 1993.^ Calculus is a very important course for engineering majors in two-year junior colleges and has a great impact on the students' academic performance. This retrospective study showed that there was a correlation between students' performance in calculus and on-time graduation after two years of study.^ The conclusions of the study urge the Ministry of Education to reform two-year junior college curriculum standards to emphasize basic rudimentary courses. It is recommended that engineering majors receive three hours of calculus per week as the current requirement of only two hours per week is inadequate. The future job market will require a technologically advanced labor force that can be trained in a higher education system. More channels of higher education for two-year junior college graduates should be made available for those wishing to pursue bachelor degrees. Additional work in calculus will not only enhance the opportunities for two-year junior college graduates to continue their pursuit of an advanced academic degree, but also serve them well as they seek career advancement. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Construction projects are complex endeavors that require the involvement of different professional disciplines in order to meet various project objectives that are often conflicting. The level of complexity and the multi-objective nature of construction projects lend themselves to collaborative design and construction such as integrated project delivery (IPD), in which relevant disciplines work together during project conception, design and construction. Traditionally, the main objectives of construction projects have been to build in the least amount of time with the lowest cost possible, thus the inherent and well-established relationship between cost and time has been the focus of many studies. The importance of being able to effectively model relationships among multiple objectives in building construction has been emphasized in a wide range of research. In general, the trade-off relationship between time and cost is well understood and there is ample research on the subject. However, despite sustainable building designs, relationships between time and environmental impact, as well as cost and environmental impact, have not been fully investigated. The objectives of this research were mainly to analyze and identify relationships of time, cost, and environmental impact, in terms of CO2 emissions, at different levels of a building: material level, component level, and building level, at the pre-use phase, including manufacturing and construction, and the relationships of life cycle cost and life cycle CO2 emissions at the usage phase. Additionally, this research aimed to develop a robust simulation-based multi-objective decision-support tool, called SimulEICon, which took construction data uncertainty into account, and was capable of incorporating life cycle assessment information to the decision-making process. The findings of this research supported the trade-off relationship between time and cost at different building levels. Moreover, the time and CO2 emissions relationship presented trade-off behavior at the pre-use phase. The results of the relationship between cost and CO2 emissions were interestingly proportional at the pre-use phase. The same pattern continually presented after the construction to the usage phase. Understanding the relationships between those objectives is a key in successfully planning and designing environmentally sustainable construction projects.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis presents a system for visually analyzing the electromagnetic fields of the electrical machines in the energy conversion laboratory. The system basically utilizes the finite element method to achieve a real-time effect in the analysis of electrical machines during hands-on experimentation. The system developed is a tool to support the student's understanding of the electromagnetic field by calculating performance measures and operational concepts pertaining to the practical study of electrical machines. Energy conversion courses are fundamental in electrical engineering. The laboratory is conducted oriented to facilitate the practical application of the theory presented in class, enabling the student to use electromagnetic field solutions obtained numerically to calculate performance measures and operating characteristics. Laboratory experiments are utilized to help the students understand the electromagnetic concepts by the use of this visual and interactive analysis system. In this system, this understanding is accomplished while hands-on experimentation takes place in real-time.