3 resultados para Thermodynamic Cycles

em Digital Commons at Florida International University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study is to theoretically investigate shockwave and microbubble formation due to laser absorption by microparticles and nanoparticles. The initial motivation for this research was to understand the underlying physical mechanisms responsible for laser damage to the retina, as well as the predict threshold levels for damage for laser pulses with of progressively shorter durations. The strongest absorbers in the retina are micron size melanosomes, and their absorption of laser light causes them to accrue very high energy density. I theoretically investigate how this absorbed energy is transferred to the surrounding medium. For a wide range of conditions I calculate shockwave generation and bubble growth as a function of the three parameters; fluence, pulse duration and pulse shape. In order to develop a rigorous physical treatment, the governing equations for the behavior of an absorber and for the surrounding medium are derived. Shockwave theory is investigated and the conclusion is that a shock pressure explanation is likely to be the underlying physical cause of retinal damage at threshold fluences for sub-nanosecond pulses. The same effects are also expected for non-biological micro and nano absorbers. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on theoretical considerations an explanation for the temperature dependence of the thermal expansion and the bulk modulus is proposed. A new equation state is also derived. Additionally a physical explanation for the latent heat of fusion is presented. These theoretical predictions are tested against experiments on highly symmetrical monatomic structures. ^ The volume is not an independent variable and must be broken down into its fundamental components when the relationships to the pressure and temperature are defined. Using zero pressure and temperature reference frame, the initial parameters, volume at zero pressure and temperature[V°], bulk modulus at zero temperature [K°] and volume coefficient of thermal expansion at zero pressure[α°] are defined. ^ The new derived EoS is tested against the experiments on perovskite and epsilon iron. The Root-mean-square-deviations (RMSD) of the residuals of the molar volume, pressure, and temperature are in the range of the uncertainty of the experiments. ^ Separating the experiments into 200 K ranges, the new EoS was compared to the most widely used finite strain, interatomic potential, and empirical isothermal EoSs such as the Burch-Murnaghan, the Vinet, and the Roy-Roy respectively. Correlation coefficients, RMSD's of the residuals, and Akaike Information Criteria were used for evaluating the fitting. Based on these fitting parameters, the new p-V-T EoS is superior in every temperature range relative to the investigated conventional isothermal EoS. ^ The new EoS for epsilon iron reproduces the preliminary-reference earth-model (PREM) densities at 6100-7400 K indicating that the presence of light elements might not be necessary to explain the Earth's inner core densities. ^ It is suggested that the latent heat of fusion supplies the energy required for overcoming on the viscous drag resistance of the atoms. The calculated energies for melts formed from highly symmetrical packing arrangements correlate very well with experimentally determined latent heat values. ^ The optical investigation of carhonado-diamond is also part of the dissertation. The collected first complete infrared FTIR absorption spectra for carhonado-diamond confirm the interstellar origin for the most enigmatic diamonds known as carbonado. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mammalian high mobility group protein AT-hook 2 (HMGA2) is a small transcriptional factor involved in cell development and oncogenesis. It contains three "AT-hook" DNA binding domains, which specifically recognize the minor groove of AT-rich DNA sequences. It also has an acidic C-terminal motif. Previous studies showed that HMGA2 mediates all its biological effects through interactions with AT-rich DNA sequences in the promoter regions. In this dissertation, I used a variety of biochemical and biophysical methods to examine the physical properties of HMGA2 and to further investigate HMGA2's interactions with AT-rich DNA sequences. The following are three avenues perused in this study: (1) due to the asymmetrical charge distribution of HMGA2, I have developed a rapid procedure to purify HMGA2 in the milligram range. Preparation of large amounts of HMGA2 makes biophysical studies possible; (2) Since HMGA2 binds to different AT-rich sequences in the promoter regions, I used a combination of isothermal titration calorimetry (ITC) and DNA UV melting experiment to characterize interactions of HMGA2 with poly(dA-dT) 2 and poly(dA)poly(dT). My results demonstrated that (i) each HMGA2 molecule binds to 15 AT bp; (ii) HMGA2 binds to both AT DNAs with very high affinity. However, the binding reaction of HMGA2 to poly(dA-dT) 2 is enthalpy-driven and the binding reaction of HMGA2 with poly(dA)poly(dT) is entropy-driven; (iii) the binding reactions are strongly depended on salt concentrations; (3) Previous studies showed that HMGA2 may have sequence specificity. In this study, I used a PCR-based SELEX procedure to examine the DNA binding specificity of HMGA2. Two consensus sequences for HMGA2 have been identified: 5'-ATATTCGCGAWWATT-3' and 5'-ATATTGCGCAWWATT-3', where W represents A or T. These consensus sequences have a unique feature: the first five base pairs are AT-rich, the middle four to five base pairs are GC-rich, and the last five to six base pairs are AT-rich. All three segments are critical for high affinity binding. Replacing either one of the AT-rich sequences to a non-AT-rich sequence causes at least 100-fold decrease in the binding affinity. Intriguingly, if the GC-segment is substituted by an AT-rich segment, the binding affinity of HMGA2 is reduced approximately 5-fold. Identification of the consensus sequences for HMGA2 represents an important step towards finding its binding sites within the genome.