4 resultados para Thermal Fluid
em Digital Commons at Florida International University
Resumo:
Compact thermal-fluid systems are found in many industries from aerospace to microelectronics where a combination of small size, light weight, and high surface area to volume ratio fluid networks are necessary. These devices are typically designed with fluid networks consisting of many small parallel channels that effectively pack a large amount of heat transfer surface area in a very small volume but do so at the cost of increased pumping power requirements. ^ To offset this cost the use of a branching fluid network for the distribution of coolant within a heat sink is investigated. The goal of the branch design technique is to minimize the entropy generation associated with the combination of viscous dissipation and convection heat transfer experienced by the coolant in the heat sink while maintaining compact high heat transfer surface area to volume ratios. ^ The derivation of Murray's Law, originally developed to predict the geometry of physiological transport systems, is extended to heat sink designs which minimze entropy generation. Two heat sink designs at different scales are built, and tested experimentally and analytically. The first uses this new derivation of Murray's Law. The second uses a combination of Murray's Law and Constructal Theory. The results of the experiments were used to verify the analytical and numerical models. These models were then used to compare the performance of the heat sink with other compact high performance heat sink designs. The results showed that the techniques used to design branching fluid networks significantly improves the performance of active heat sinks. The design experience gained was then used to develop a set of geometric relations which optimize the heat transfer to pumping power ratio of a single cooling channel element. Each element can be connected together using a set of derived geometric guidelines which govern branch diameters and angles. The methodology can be used to design branching fluid networks which can fit any geometry. ^
Resumo:
A novel and new thermal management technology for advanced ceramic microelectronic packages has been developed incorporating miniature heat pipes embedded in the ceramic substrate. The heat pipes use an axially grooved wick structure and water as the working fluid. Prototype substrate/heat pipe systems were fabricated using high temperature co-fired ceramic (alumina). The heat pipes were nominally 81 mm in length, 10 mm in width, and 4 mm in height, and were charged with approximately 50–80 μL of water. Platinum thick film heaters were fabricated on the surface of the substrate to simulate heat dissipating electronic components. Several thermocouples were affixed to the substrate to monitor temperature. One end of the substrate was affixed to a heat sink maintained at constant temperature. The prototypes were tested and shown to successful and reliably operate with thermal loads over 20 Watts, with thermal input from single and multiple sources along the surface of the substrate. Temperature distributions are discussed for the various configurations and the effective thermal resistance of the substrate/heat pipe system is calculated. Finite element analysis was used to support the experimental findings and better understand the sources of the system's thermal resistance. ^
Resumo:
A novel and new thermal management technology for advanced ceramic microelectronic packages has been developed incorporating miniature heat pipes embedded in the ceramic substrate. The heat pipes use an axially grooved wick structure and water as the working fluid. Prototype substrate/heat pipe systems were fabricated using high temperature co-fired ceramic (alumina). The heat pipes were nominally 81 mm in length, 10 mm in width, and 4 mm in height, and were charged with approximately 50-80 mL of water. Platinum thick film heaters were fabricated on the surface of the substrate to simulate heat dissipating electronic components. Several thermocouples were affixed to the substrate to monitor temperature. One end of the substrate was affixed to a heat sink maintained at constant temperature. The prototypes were tested and shown to successful and reliably operate with thermal loads over 20 Watts, with thermal input from single and multiple sources along the surface of the substrate. Temperature distributions are discussed for the various configurations and the effective thermal resistance of the substrate/heat pipe system is calculated. Finite element analysis was used to support the experimental findings and better understand the sources of the system's thermal resistance.
Resumo:
The aim of this work is to present a methodology to develop cost-effective thermal management solutions for microelectronic devices, capable of removing maximum amount of heat and delivering maximally uniform temperature distributions. The topological and geometrical characteristics of multiple-story three-dimensional branching networks of microchannels were developed using multi-objective optimization. A conjugate heat transfer analysis software package and an automatic 3D microchannel network generator were developed and coupled with a modified version of a particle-swarm optimization algorithm with a goal of creating a design tool for 3D networks of optimized coolant flow passages. Numerical algorithms in the conjugate heat transfer solution package include a quasi-ID thermo-fluid solver and a steady heat diffusion solver, which were validated against results from high-fidelity Navier-Stokes equations solver and analytical solutions for basic fluid dynamics test cases. Pareto-optimal solutions demonstrate that thermal loads of up to 500 W/cm2 can be managed with 3D microchannel networks, with pumping power requirements up to 50% lower with respect to currently used high-performance cooling technologies.