14 resultados para Teaching science
em Digital Commons at Florida International University
Resumo:
Current views of the nature of knowledge and of learning suggest that instructional approaches in science education pay closer attention to how students learn rather than on teaching. This study examined the use of approaches to teaching science based on two contrasting perspectives in learning, social constructivist and traditional, and the effects they have on students' attitudes and achievement. Four categories of attitudes were measured using the Upper Secondary Attitude Questionnaire: Attitude towards school, towards the importance of science, towards science as a career, and towards science as a subject in school. Achievement was measured by average class grades and also with a researcher/teacher constructed 30-item test that involved three sub-scales of items based on knowledge, and applications involving near-transfer and far-transfer of concepts. The sample consisted of 202 students in nine intact classrooms in chemistry at a large high school in Miami, Florida, and involved two teachers. Results were analyzed using a two-way analysis of covariance (ANCOVA) with a pretest in attitude as the covariate for attitudes and prior achievement as the covariate for achievement. A comparison of the adjusted mean scores was made between the two groups and between females and males. ^ With constructivist-based teaching, students showed more favorable attitude towards science as a subject, obtained significantly higher scores in class achievement, total achievement and achievement on the knowledge sub-scale of the knowledge and application test. Students in the traditional group showed more favorable attitude towards school. Females showed significantly more positive attitude towards the importance of science and obtained significantly higher scores in class achievement. No significant interaction effects were obtained for method of instruction by gender. ^ This study lends some support to the view that constructivist-based approaches to teaching science is a viable alternative to traditional modes of teaching. It is suggested that in science education, more consideration be given to those aspects of classroom teaching that foster closer coordination between social influences and individual learning. ^
Resumo:
Proofs by induction are central to many computer science areas such as data structures, theory of computation, programming languages, program efficiency-time complexity, and program correctness. Proofs by induction can also improve students’ understanding and performance of computer science concepts such as programming languages, algorithm design, and recursion, as well as serve as a medium for teaching them. Even though students are exposed to proofs by induction in many courses of their curricula, they still have difficulties understanding and performing them. This impacts the whole course of their studies, since proofs by induction are omnipresent in computer science. Specifically, students do not gain conceptual understanding of induction early in the curriculum and as a result, they have difficulties applying it to more advanced areas later on in their studies. The goal of my dissertation is twofold: (1) identifying sources of computer science students’ difficulties with proofs by induction, and (2) developing a new approach to teaching proofs by induction by way of an interactive and multimodal electronic book (e-book). For the first goal, I undertook a study to identify possible sources of computer science students’ difficulties with proofs by induction. Its results suggest that there is a close correlation between students’ understanding of inductive definitions and their understanding and performance of proofs by induction. For designing and developing my e-book, I took into consideration the results of my study, as well as the drawbacks of the current methodologies of teaching proofs by induction for computer science. I designed my e-book to be used as a standalone and complete educational environment. I also conducted a study on the effectiveness of my e-book in the classroom. The results of my study suggest that, unlike the current methodologies of teaching proofs by induction for computer science, my e-book helped students overcome many of their difficulties and gain conceptual understanding of proofs induction.
Resumo:
The overall purpose of this collected papers dissertation was to examine the utility of a cognitive apprenticeship-based instructional coaching (CAIC) model for improving the science teaching efficacy beliefs (STEB) of preservice and inservice elementary teachers. Many of these teachers perceive science as a difficult subject and feel inadequately prepared to teach it. However, teacher efficacy beliefs have been noted as the strongest indicator of teacher quality, the variable most highly correlated with student achievement outcomes. The literature is scarce on strong, evidence-based theoretical models for improving STEB. This dissertation is comprised of two studies. STUDY #1 was a sequential explanatory mixed-methods study investigating the impact of a reformed CAIC elementary science methods course on the STEB of 26 preservice teachers. Data were collected using the Science Teaching Efficacy Belief Instrument (STEBI-B) and from six post-course interviews. A statistically significant increase in STEB was observed in the quantitative strand. The qualitative data suggested that the preservice teachers perceived all of the CAIC methods as influential, but the significance of each method depended on their unique needs and abilities. STUDY #2 was a participatory action research case study exploring the utility of a CAIC professional development program for improving the STEB of five Bahamian inservice teachers and their competency in implementing an inquiry-based curriculum. Data were collected from pre- and post-interviews and two focus group interviews. Overall, the inservice teachers perceived the intervention as highly effective. The scaffolding and coaching were the CAIC methods portrayed as most influential in developing their STEB, highlighting the importance of interpersonal relationship aspects in successful instructional coaching programs. The teachers also described the CAIC approach as integral in supporting their learning to implement the new inquiry-based curriculum. The overall findings hold important implications for science education reform, including its potential to influence how preservice teacher training and inservice teacher professional development in science are perceived and implemented. Additionally, given the noteworthy results obtained over the relatively short durations, CAIC interventions may also provide an effective means of achieving improvements in preservice and inservice teachers’ STEB more expeditiously than traditional approaches.
Resumo:
Proofs by induction are central to many computer science areas such as data structures, theory of computation, programming languages, program efficiency-time complexity, and program correctness. Proofs by induction can also improve students’ understanding of and performance with computer science concepts such as programming languages, algorithm design, and recursion, as well as serve as a medium for teaching them. Even though students are exposed to proofs by induction in many courses of their curricula, they still have difficulties understanding and performing them. This impacts the whole course of their studies, since proofs by induction are omnipresent in computer science. Specifically, students do not gain conceptual understanding of induction early in the curriculum and as a result, they have difficulties applying it to more advanced areas later on in their studies. The goal of my dissertation is twofold: 1. identifying sources of computer science students’ difficulties with proofs by induction, and 2. developing a new approach to teaching proofs by induction by way of an interactive and multimodal electronic book (e-book). For the first goal, I undertook a study to identify possible sources of computer science students’ difficulties with proofs by induction. Its results suggest that there is a close correlation between students’ understanding of inductive definitions and their understanding and performance of proofs by induction. For designing and developing my e-book, I took into consideration the results of my study, as well as the drawbacks of the current methodologies of teaching proofs by induction for computer science. I designed my e-book to be used as a standalone and complete educational environment. I also conducted a study on the effectiveness of my e-book in the classroom. The results of my study suggest that, unlike the current methodologies of teaching proofs by induction for computer science, my e-book helped students overcome many of their difficulties and gain conceptual understanding of proofs induction.
Resumo:
The overall purpose of this collected papers dissertation was to examine the utility of a cognitive apprenticeship-based instructional coaching (CAIC) model for improving the science teaching efficacy beliefs (STEB) of preservice and inservice elementary teachers. Many of these teachers perceive science as a difficult subject and feel inadequately prepared to teach it. However, teacher efficacy beliefs have been noted as the strongest indicator of teacher quality, the variable most highly correlated with student achievement outcomes. The literature is scarce on strong, evidence-based theoretical models for improving STEB.^ This dissertation is comprised of two studies. STUDY #1 was a sequential explanatory mixed-methods study investigating the impact of a reformed CAIC elementary science methods course on the STEB of 26 preservice teachers. Data were collected using the Science Teaching Efficacy Belief Instrument (STEBI-B) and from six post-course interviews. A statistically significant increase in STEB was observed in the quantitative strand. The qualitative data suggested that the preservice teachers perceived all of the CAIC methods as influential, but the significance of each method depended on their unique needs and abilities. ^ STUDY #2 was a participatory action research case study exploring the utility of a CAIC professional development program for improving the STEB of five Bahamian inservice teachers and their competency in implementing an inquiry-based curriculum. Data were collected from pre- and post-interviews and two focus group interviews. Overall, the inservice teachers perceived the intervention as highly effective. The scaffolding and coaching were the CAIC methods portrayed as most influential in developing their STEB, highlighting the importance of interpersonal relationship aspects in successful instructional coaching programs. The teachers also described the CAIC approach as integral in supporting their learning to implement the new inquiry-based curriculum. ^ The overall findings hold important implications for science education reform, including its potential to influence how preservice teacher training and inservice teacher professional development in science are perceived and implemented. Additionally, given the noteworthy results obtained over the relatively short durations, CAIC interventions may also provide an effective means of achieving improvements in preservice and inservice teachers’ STEB more expeditiously than traditional approaches.^
Resumo:
A review of the literature reveals few research has attempted to demonstrate if a relationship exists between the type of teacher training a science teacher has received and the perceived attitudes of his/her students. Some of the teacher preparation factors examined in this study include the college major chosen by the science teacher, the highest degree earned, the number of years of teaching experience, the type of science course taught, and the grade level taught by the teacher. This study examined how the various factors mentioned, could influence the behaviors which are characteristic of the teacher, and how these behaviors could be reflective in the classroom environment experienced by the students.^ The instrument used in the study was the Classroom Environment Scale (CES), Real Form. The measured classroom environment was broken down into three separate dimensions, with three components within each dimension in the CES. Multiple Regression statistical analyses examined how components of the teachers' education influenced the perceived dimensions of the classroom environment from the students.^ The study occurred in Miami-Dade County Florida, with a predominantly urban high school student population. There were 40 secondary science teachers involved, each with an average of 30 students. The total number of students sampled in the study was 1200. The teachers who participated in the study taught the entire range of secondary science courses offered at this large school district. All teachers were selected by the researcher so that a balance would occur in the sample between teachers who were education major versus science major. Additionally, the researcher selected teachers so that a balance occurred in regards to the different levels of college degrees earned among those involved in the study.^ Several research questions sought to determine if there was significant difference between the type of the educational background obtained by secondary science teachers and the students' perception of the classroom environment. Other research questions sought to determine if there were significant differences in the students' perceptions of the classroom environment for secondary science teachers who taught biological content, or non-biological content sciences. An additional research question sought to evaluate if the grade level taught would affect the students' perception of the classroom environment. (Abstract shortened by UMI.) ^
Resumo:
There is currently a crisis in science education in the United States. This statement is based on the National Science Foundation's report stating that the nation's students, on average, still rank near the bottom in science and math achievement internationally. ^ This crisis is the background of the problem for this study. This investigation studied learner variables that were thought to play a role in teaching chemistry at the secondary school level, and related them to achievement in the chemistry classroom. Among these, cognitive style (field dependence/independence), attitudes toward science, and self-concept had been given considerable attention by researchers in recent years. These variables were related to different competencies that could be used to measure the various types of achievement in the chemistry classroom at the secondary school level. These different competencies were called academic, laboratory, and problem solving achievement. Each of these chemistry achievement components may be related to a different set of learner variables, and the main purpose of this study was to investigate the nature of these relationships. ^ Three instruments to determine attitudes toward science, cognitive style, and self-concept were used for data collection. Teacher grades were used to determine chemistry achievement for each student. ^ Research questions were analyzed using Pearson Product Moment Correlation Coefficients and t-tests. Results indicated that field independence was significantly correlated with problem solving, academic, and laboratory achievement. Educational researchers should therefore investigate how to teach students to be more field independent so they can achieve at higher levels in chemistry. ^ It was also true that better attitudes toward the social benefits and problems that accompany scientific progress were significantly correlated with higher achievement on all three academic measures in chemistry. This suggests that educational researchers should investigate how students might be guided to manifest more favorable attitudes toward science so they will achieve at higher levels in chemistry. ^ An overall theme that emerged from this study was that findings refuted the idea that female students believed that science was for males only and was an inappropriate and unfeminine activity. This was true because when the means of males and females were compared on the three measures of chemistry achievement, there was no statistically significant difference between them on problem solving or academic achievement. However, females were significantly better in laboratory achievement. ^
Resumo:
Science professional development, which is fundamental to science education improvement, has been described as being weak and fragmentary. The purpose of this study was to investigate teachers' perceptions of informal science professional development to gain an in-depth understanding of the essence of the phenomenon and related science-teaching dispositions. Based on the frameworks of phenomenology, constructivism, and adult learning theory, the focus was on understanding how the phenomenon was experienced within the context of teachers' everyday world. ^ Data were collected from eight middle-school teachers purposefully selected because they had participated in informal programs during Project TRIPS (Teaching Revitalized Through Informal Programs in Science), a collaboration between the Miami-Dade school district, government agencies (including NASA), and non-profit organizations (including Audubon of Florida). In addition, the teachers experienced hands-on labs offered through universities (including the University of Arizona), field sites, and other agencies. ^ The study employed Seidman's (1991) three-interview series to collect the data. Several methods were used to enhance the credibility of the research, including using triangulation of the data. The interviews were transcribed, color-coded and organized into six themes that emerged from the data. The themes included: (a) internalized content knowledge, (b) correlated hands-on activities, (c) enhanced science-teaching disposition, (d) networking/camaraderie, (e) change of context, and (f) acknowledgment as professionals. The teachers identified supportive elements and constraints related to each theme. ^ The results indicated that informal programs offering experiential learning opportunities strengthened understanding of content knowledge. Teachers implemented hands-on activities that were explicitly correlated to their curriculum. Programs that were conducted in a relaxed context enhanced teachers' science-teaching dispositions. However, a lack of financial and administrative support, perceived safety risks, insufficient reflection time, and unclear itineraries impeded program implementation. The results illustrated how informal educators can use this cohesive model as they develop programs that address the supports and constraints to teachers' science instruction needs. This, in turn, can aid teachers as they strive to provide effective science instruction to students; notions embedded in reforms. Ultimately, this can affect how learners develop the ability to make informed science decisions that impact the quality of life on a global scale. ^
Resumo:
This study was conducted to determine if the use of the technology known as Classroom Performance System (CPS), specifically referred to as "Clickers", improves the learning gains of students enrolled in a biology course for science majors. CPS is one of a group of developing technologies adapted for providing feedback in the classroom using a learner-centered approach. It supports and facilitates discussion among students and between them and teachers, and provides for participation by passive students. Advocates, influenced by constructivist theories, claim increased academic achievement. In science teaching, the results have been mixed, but there is some evidence of improvements in conceptual understanding. The study employed a pretest-posttest, non-equivalent groups experimental design. The sample consisted of 226 participants in six sections of a college biology course at a large community college in South Florida with two instructors trained in the use of clickers. Each instructor randomly selected their sections into CPS (treatment) and non-CPS (control) groups. All participants filled out a survey that included demographic data at the beginning of the semester. The treatment group used clicker questions throughout, with discussions as necessary, whereas the control groups answered the same questions as quizzes, similarly engaging in discussion where necessary. The learning gains were assessed on a pre/post-test basis. The average learning gains, defined as the actual gain divided by the possible gain, were slightly better in the treatment group than in the control group, but the difference was statistically non-significant. An Analysis of Covariance (ANCOVA) statistic with pretest scores as the covariate was conducted to test for significant differences between the treatment and control groups on the posttest. A second ANCOVA was used to determine the significance of differences between the treatment and control groups on the posttest scores, after controlling for sex, GPA, academic status, experience with clickers, and instructional style. The results indicated a small increase in learning gains but these were not statistically significant. The data did not support an increase in learning based on the use of the CPS technology. This study adds to the body of research that questions whether CPS technology merits classroom adaptation.
Resumo:
Physical therapy students must apply the relevant information learned in their academic and clinical experience to problem solve in treating patients. I compared the clinical cognitive competence in patient care of second-year masters students enrolled in two different curricular programs: modified problem-based (M P-B; n = 27) and subject-centered (S-C; n = 41). Main features of S-C learning include lecture and demonstration as the major teaching strategies and no exposure to patients or problem solving learning until the sciences (knowledge) have been taught. Comparatively, main features of M P-B learning include case study in small student groups as the main teaching strategy, early and frequent exposure to patients, and knowledge and problem solving skills learned together for each specific case. Basic and clinical orthopedic knowledge was measured with a written test with open-ended items. Problem solving skills were measured with a written case study patient problem test yielding three subscores: assessment, problem identification, and treatment planning. ^ Results indicated that among the demographic and educational characteristics analyzed, there was a significant difference between groups on ethnicity, bachelor degree type, admission GPA, and current GPA, but there was no significant difference on gender, age, possession of a physical therapy assistant license, and GRE score. In addition, the M P-B group achieved a significantly higher adjusted mean score on the orthopedic knowledge test after controlling for GRE scores. The S-C group achieved a significantly higher adjusted mean total score and treatment management subscore on the case study test after controlling for orthopedic knowledge test scores. These findings did not support their respective research hypotheses. There was no significant difference between groups on the assessment and problem identification subscores of the case study test. The integrated M P-B approach promoted superior retention of basic and clinical science knowledge. The results on problem solving skills were mixed. The S-C approach facilitated superior treatment planning skills, but equivalent patient assessment and problem identification skills by emphasizing all equally and exposing the students to more patients with a wider variety of orthopedic physical therapy needs than in the M P-B approach. ^
Resumo:
The Colorado Learning Attitudes about Science Survey (CLASS) has been widely acknowledged as a useful measure of student cognitive attitudes about science and learning. The initial University of Colorado validation study included only 20% non-Caucasian student populations. In this Brief Report we extend their validation to include a predominately under-represented minority population. We validated the CLASS instrument at Florida International University, a Hispanic-serving institution, by interviewing students in introductory physics classes using a semistructured protocol, examining students’ responses on the CLASS item statements, and comparing them to the items’ intended meaning. We find that in our predominately Hispanic population, 94% of the students’ interview responses indicate that the students interpret the CLASS items correctly, and thus the CLASS is a valid instrument. We also identify one potentially problematic item in the instrument which one third of the students interviewed consistently misinterpreted.
Resumo:
Poor informational reading and writing skills in early grades and the need to provide students more experience with informational text have been identified by research as areas of concern. Wilkinson and Son (2011) support future research in dialogic approaches to investigate the impact dialogic teaching has on comprehension. This study (N = 39) examined the gains in reading comprehension, science achievement, and metacognitive functioning of individual second grade students interacting with instructors using dialogue journals alongside their textbook. The 38 week study consisted of two instructional phases, and three assessment points. After a period of oral metacognitive strategies, one class formed the treatment group (n=17), consisting of two teachers following the co-teaching method, and two classes formed the comparison group ( n=22). The dialogue journal intervention for the treatment group embraced the transactional theory of instruction through the use of dialogic interaction between teachers and students. Students took notes on the assigned lesson after an oral discussion. Teachers responded to students' entries with scaffolding using reading strategies (prior knowledge, skim, slow down, mental integration, and diagrams) modeled after Schraw's (1998) strategy evaluation matrix, to enhance students' comprehension. The comparison group utilized text-based, teacher-led whole group discussion. Data were collected using different measures: (a) Florida Assessments for Instruction in Reading (FAIR) Broad Diagnostic Inventory; (b) Scott Foresman end of chapter tests; (c) Metacomprehension Strategy Index (Schmitt, 1990); and (d) researcher-made metacognitive scaffolding rubric. Statistical analyses were performed using paired sample t-tests, regression analysis of covariance, and two way analysis of covariance. Findings from the study revealed that experimental participants performed significantly better on the linear combination of reading comprehension, science achievement, and metacognitive function, than their comparison group counterparts while controlling for pretest scores. Overall, results from the study established that teacher scaffolding using metacognitive strategies can potentially develop students' reading comprehension, science achievement, and metacognitive awareness. This suggests that early childhood students gain from the integration of reading and writing when using authentic materials (science textbooks) in science classrooms. A replication of this study with more students across more schools, and different grade levels would improve the generalizability of these results.
Resumo:
A review of the literature reveals few research has attempted to demonstrate if a relationship exists between the type of teacher training a science teacher has received and the perceived attitudes of his/her students. Considering that a great deal of time and energy has been devoted by university colleges, school districts, and educators towards refining the teacher education process, it would be more efficient for all parties involved, if research were available that could discern if certain pathways in achieving that education, would promote the tendency towards certain teacher behaviors occurring in the classroom, while other pathways would lead towards different behaviors. Some of the teacher preparation factors examined in this study include the college major chosen by the science teacher, the highest degree earned, the number of years of teaching experience, the type of science course taught, and the grade level taught by the teacher. This study examined how the various factors mentioned, could influence the behaviors which are characteristic of the teacher, and how these behaviors could be reflective in the classroom environment experienced by the students. The instrument used in the study was the Classroom Environment Scale (CES), Real Form. The measured classroom environment was broken down into three separate dimensions, with three components within each dimension in the CES. Multiple Regression statistical analyses examined how components of the teachers' education influenced the perceived dimensions of the classroom environment from the students. The study occurred in Miami-Dade County Florida, with a predominantly urban high school student population. There were 40 secondary science teachers involved, each with an average of 30 students. The total number of students sampled in the study was 1200. The teachers who participated in the study taught the entire range of secondary science courses offered at this large school district. All teachers were selected by the researcher so that a balance would occur in the sample between teachers who were education major versus science major. Additionally, the researcher selected teachers so that a balance occurred in regards to the different levels of college degrees earned among those involved in the study. Several research questions sought to determine if there was significant difference between the type of the educational background obtained by secondary science teachers and the students' perception of the classroom environment. Other research questions sought to determine if there were significant differences in the students' perceptions of the classroom environment for secondary science teachers who taught biological content, or non-biological content sciences. An additional research question sought to evaluate if the grade level taught would affect the students' perception of the classroom environment. Analysis of the multiple regression were run for each of four scores from the CES, Real Form. For score 1, involvement of students, the results showed that teachers with the highest number of years of experience, with masters or masters plus degrees, who were education majors, and who taught twelfth grade students, had greater amounts of students being attentive and interested in class activities, participating in discussions, and doing additional work on their own, as compared with teachers who had lower experience, a bachelors degree, were science majors, and who taught a grade lower than twelfth. For score 2, task orientation, which emphasized completing the required activities and staying on-task, the results showed that teachers with the highest and intermediate experience, a science major, and with the highest college degree, showed higher scores as compared with the teachers indicating lower experiences, education major and a bachelors degree. For Score 3, competition, which indicated how difficult it was to achieve high grades in the class, the results showed that teachers who taught non-biology content subjects had the greatest effect on the regression. Teachers with a masters degree, low levels of experience, and who taught twelfth grade students were also factored into the regression equation. For Score 4, innovation, which indicated the extent in which the teachers used new and innovative techniques to encourage diverse and creative thinking included teachers with an education major as the first entry into the regression equation. Teachers with the least experience (0 to 3 years), and teachers who taught twelfth and eleventh grade students were also included into the regression equation.
Resumo:
This study was conducted to determine if the use of the technology known as Classroom Performance System (CPS), specifically referred to as “Clickers”, improves the learning gains of students enrolled in a biology course for science majors. CPS is one of a group of developing technologies adapted for providing feedback in the classroom using a learner-centered approach. It supports and facilitates discussion among students and between them and teachers, and provides for participation by passive students. Advocates, influenced by constructivist theories, claim increased academic achievement. In science teaching, the results have been mixed, but there is some evidence of improvements in conceptual understanding. The study employed a pretest-posttest, non-equivalent groups experimental design. The sample consisted of 226 participants in six sections of a college biology course at a large community college in South Florida with two instructors trained in the use of clickers. Each instructor randomly selected their sections into CPS (treatment) and non-CPS (control) groups. All participants filled out a survey that included demographic data at the beginning of the semester. The treatment group used clicker questions throughout, with discussions as necessary, whereas the control groups answered the same questions as quizzes, similarly engaging in discussion where necessary. The learning gains were assessed on a pre/post-test basis. The average learning gains, defined as the actual gain divided by the possible gain, were slightly better in the treatment group than in the control group, but the difference was statistically non-significant. An Analysis of Covariance (ANCOVA) statistic with pretest scores as the covariate was conducted to test for significant differences between the treatment and control groups on the posttest. A second ANCOVA was used to determine the significance of differences between the treatment and control groups on the posttest scores, after controlling for sex, GPA, academic status, experience with clickers, and instructional style. The results indicated a small increase in learning gains but these were not statistically significant. The data did not support an increase in learning based on the use of the CPS technology. This study adds to the body of research that questions whether CPS technology merits classroom adaptation.