2 resultados para Taylor, Harriet R.

em Digital Commons at Florida International University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Estuaries and estuarine wetlands are ecologically and societally important systems, exhibiting high rates of primary production that fuel offshore secondary production. Hydrological processes play a central role in shaping estuarine ecosystem structure and function by controlling nutrient loading and the relative contributions of marine and terrestrial influences on the estuary. The Comprehensive Everglades Restoration Plan includes plans to restore freshwater delivery to Taylor Slough, a shallow drainage basin in the southern Everglades, ultimately resulting in increased freshwater flow to the downstream Taylor River estuary. The existing seasonal and inter-annual variability of water flow and source in Taylor River affords the opportunity to investigate relationships between ecosystem function and hydrologic forcing. Estimates of aquatic ecosystem metabolism, derived from free-water, diel changes in dissolved oxygen, were combined with assessments of wetland flocculent detritus quality and transport within the context of seasonal changes in Everglades hydrology. Variation in ecosystem gross primary production and respiration were linked to seasonal changes in estuarine water quality using multiple autoregression models. Furthermore, Taylor River was observed to be net heterotrophic, indicating that an allochthonous source of carbon maintained ecosystem respiration in excess of autochthonous primary production. Wetland-derived detritus appears to be an important vector of energy and nutrients across the Everglades landscape; and in Taylor River, is seasonally flushed into ponded segments of the river where it is then respired. Lastly, seasonal water delivery appears to govern feedbacks regulating water column phosphorus availability in the Taylor River estuary.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Everglades National Park (ENP) is the last hydrologic unit in the series of impounded marsh units that make up the present-day Everglades. The ENP receives water from upstream Water Conservation Areas via canals and water control structures that are highly regulated for flood control, water supply, wildlife management, concerns about poor water quality and the potential for downstream ecosystem degradation. Recent surveys of surface soils in ENP, designed for random sampling for spatial analysis of soil nutrients, did not sample proximate to inflow structures and thus did not detect increased soil phosphorus associated with these water conveyances. This study specifically addressed these areas in a focused sampling effort at three key inflow points in northeast ENP which revealed elevated soil TP proximate to inflows. Two transects extending down Shark River Slough and one down Taylor Slough (a natural watershed of particular ecological value) were found to have soil TP levels in excess of 500 mg kg−1—a threshold above which P enrichment is indicated. These findings suggest the negative impact of elevated water (P) from surface flows and support the assertion that significant soil TP enrichment is occurring in Taylor Slough and other areas of northeastern ENP.