7 resultados para TRANSPORTATION NETWORKS

em Digital Commons at Florida International University


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hazardous materials are substances that, if not regulated, can pose a threat to human populations and their environmental health, safety or property when transported in commerce. About 1.5 million tons of hazardous material shipments are transported by truck in the US annually, with a steady increase of approximately 5% per year. The objective of this study was to develop a routing tool for hazardous material transport in order to facilitate reduced environmental impacts and less transportation difficulties, yet would also find paths that were still compelling for the shipping carriers as a matter of trucking cost. The study started with identification of inhalation hazard impact zones and explosion protective areas around the location of hypothetical hazardous material releases, considering different parameters (i.e., chemicals characteristics, release quantities, atmospheric condition, etc.). Results showed that depending on the quantity of release, chemical, and atmospheric stability (a function of wind speed, meteorology, sky cover, time and location of accidents, etc.) the consequence of these incidents can differ. The study was extended by selection of other evaluation criteria for further investigation because health risk as an evaluation criterion would not be the only concern in selection of routes. Transportation difficulties (i.e., road blockage and congestion) were incorporated as important factor due to their indirect impact/cost on the users of transportation networks. Trucking costs were also considered as one of the primary criteria in selection of hazardous material paths; otherwise the suggested routes would have not been convincing for the shipping companies. The last but not least criterion was proximity of public places to the routes. The approach evolved from a simple framework to a complicated and efficient GIS-based tool able to investigate transportation networks of any given study area, and capable of generating best routing options for cargos. The suggested tool uses a multi-criteria-decision-making method, which considers the priorities of the decision makers in choosing the cargo routes. Comparison of the routing options based on each criterion and also the overall suitableness of the path in regards to all the criteria (using a multi-criteria-decision-making method) showed that using similar tools as the one proposed by this study can provide decision makers insights in the area of hazardous material transport. This tool shows the probable consequences of considering each path in a very easily understandable way; in the formats of maps and tables, which makes the tradeoffs of costs and risks considerably simpler, as in some cases slightly compromising on trucking cost may drastically decrease the probable health risk and/or traffic difficulties. This will not only be rewarding to the community by making cities safer places to live, but also can be beneficial to shipping companies by allowing them to advertise as environmental friendly conveyors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Providing transportation system operators and travelers with accurate travel time information allows them to make more informed decisions, yielding benefits for individual travelers and for the entire transportation system. Most existing advanced traveler information systems (ATIS) and advanced traffic management systems (ATMS) use instantaneous travel time values estimated based on the current measurements, assuming that traffic conditions remain constant in the near future. For more effective applications, it has been proposed that ATIS and ATMS should use travel times predicted for short-term future conditions rather than instantaneous travel times measured or estimated for current conditions. ^ This dissertation research investigates short-term freeway travel time prediction using Dynamic Neural Networks (DNN) based on traffic detector data collected by radar traffic detectors installed along a freeway corridor. DNN comprises a class of neural networks that are particularly suitable for predicting variables like travel time, but has not been adequately investigated for this purpose. Before this investigation, it was necessary to identifying methods for data imputation to account for missing data usually encountered when collecting data using traffic detectors. It was also necessary to identify a method to estimate the travel time on the freeway corridor based on data collected using point traffic detectors. A new travel time estimation method referred to as the Piecewise Constant Acceleration Based (PCAB) method was developed and compared with other methods reported in the literatures. The results show that one of the simple travel time estimation methods (the average speed method) can work as well as the PCAB method, and both of them out-perform other methods. This study also compared the travel time prediction performance of three different DNN topologies with different memory setups. The results show that one DNN topology (the time-delay neural networks) out-performs the other two DNN topologies for the investigated prediction problem. This topology also performs slightly better than the simple multilayer perceptron (MLP) neural network topology that has been used in a number of previous studies for travel time prediction.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the advent of peer to peer networks, and more importantly sensor networks, the desire to extract useful information from continuous and unbounded streams of data has become more prominent. For example, in tele-health applications, sensor based data streaming systems are used to continuously and accurately monitor Alzheimer's patients and their surrounding environment. Typically, the requirements of such applications necessitate the cleaning and filtering of continuous, corrupted and incomplete data streams gathered wirelessly in dynamically varying conditions. Yet, existing data stream cleaning and filtering schemes are incapable of capturing the dynamics of the environment while simultaneously suppressing the losses and corruption introduced by uncertain environmental, hardware, and network conditions. Consequently, existing data cleaning and filtering paradigms are being challenged. This dissertation develops novel schemes for cleaning data streams received from a wireless sensor network operating under non-linear and dynamically varying conditions. The study establishes a paradigm for validating spatio-temporal associations among data sources to enhance data cleaning. To simplify the complexity of the validation process, the developed solution maps the requirements of the application on a geometrical space and identifies the potential sensor nodes of interest. Additionally, this dissertation models a wireless sensor network data reduction system by ascertaining that segregating data adaptation and prediction processes will augment the data reduction rates. The schemes presented in this study are evaluated using simulation and information theory concepts. The results demonstrate that dynamic conditions of the environment are better managed when validation is used for data cleaning. They also show that when a fast convergent adaptation process is deployed, data reduction rates are significantly improved. Targeted applications of the developed methodology include machine health monitoring, tele-health, environment and habitat monitoring, intermodal transportation and homeland security.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A wireless mesh network is a mesh network implemented over a wireless network system such as wireless LANs. Wireless Mesh Networks(WMNs) are promising for numerous applications such as broadband home networking, enterprise networking, transportation systems, health and medical systems, security surveillance systems, etc. Therefore, it has received considerable attention from both industrial and academic researchers. This dissertation explores schemes for resource management and optimization in WMNs by means of network routing and network coding.^ In this dissertation, we propose three optimization schemes. (1) First, a triple-tier optimization scheme is proposed for load balancing objective. The first tier mechanism achieves long-term routing optimization, and the second tier mechanism, using the optimization results obtained from the first tier mechanism, performs the short-term adaptation to deal with the impact of dynamic channel conditions. A greedy sub-channel allocation algorithm is developed as the third tier optimization scheme to further reduce the congestion level in the network. We conduct thorough theoretical analysis to show the correctness of our design and give the properties of our scheme. (2) Then, a Relay-Aided Network Coding scheme called RANC is proposed to improve the performance gain of network coding by exploiting the physical layer multi-rate capability in WMNs. We conduct rigorous analysis to find the design principles and study the tradeoff in the performance gain of RANC. Based on the analytical results, we provide a practical solution by decomposing the original design problem into two sub-problems, flow partition problem and scheduling problem. (3) Lastly, a joint optimization scheme of the routing in the network layer and network coding-aware scheduling in the MAC layer is introduced. We formulate the network optimization problem and exploit the structure of the problem via dual decomposition. We find that the original problem is composed of two problems, routing problem in the network layer and scheduling problem in the MAC layer. These two sub-problems are coupled through the link capacities. We solve the routing problem by two different adaptive routing algorithms. We then provide a distributed coding-aware scheduling algorithm. According to corresponding experiment results, the proposed schemes can significantly improve network performance.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The standard highway assignment model in the Florida Standard Urban Transportation Modeling Structure (FSUTMS) is based on the equilibrium traffic assignment method. This method involves running several iterations of all-or-nothing capacity-restraint assignment with an adjustment of travel time to reflect delays encountered in the associated iteration. The iterative link time adjustment process is accomplished through the Bureau of Public Roads (BPR) volume-delay equation. Since FSUTMS' traffic assignment procedure outputs daily volumes, and the input capacities are given in hourly volumes, it is necessary to convert the hourly capacities to their daily equivalents when computing the volume-to-capacity ratios used in the BPR function. The conversion is accomplished by dividing the hourly capacity by a factor called the peak-to-daily ratio, or referred to as CONFAC in FSUTMS. The ratio is computed as the highest hourly volume of a day divided by the corresponding total daily volume. ^ While several studies have indicated that CONFAC is a decreasing function of the level of congestion, a constant value is used for each facility type in the current version of FSUTMS. This ignores the different congestion level associated with each roadway and is believed to be one of the culprits of traffic assignment errors. Traffic counts data from across the state of Florida were used to calibrate CONFACs as a function of a congestion measure using the weighted least squares method. The calibrated functions were then implemented in FSUTMS through a procedure that takes advantage of the iterative nature of FSUTMS' equilibrium assignment method. ^ The assignment results based on constant and variable CONFACs were then compared against the ground counts for three selected networks. It was found that the accuracy from the two assignments was not significantly different, that the hypothesized improvement in assignment results from the variable CONFAC model was not empirically evident. It was recognized that many other factors beyond the scope and control of this study could contribute to this finding. It was recommended that further studies focus on the use of the variable CONFAC model with recalibrated parameters for the BPR function and/or with other forms of volume-delay functions. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Providing transportation system operators and travelers with accurate travel time information allows them to make more informed decisions, yielding benefits for individual travelers and for the entire transportation system. Most existing advanced traveler information systems (ATIS) and advanced traffic management systems (ATMS) use instantaneous travel time values estimated based on the current measurements, assuming that traffic conditions remain constant in the near future. For more effective applications, it has been proposed that ATIS and ATMS should use travel times predicted for short-term future conditions rather than instantaneous travel times measured or estimated for current conditions. This dissertation research investigates short-term freeway travel time prediction using Dynamic Neural Networks (DNN) based on traffic detector data collected by radar traffic detectors installed along a freeway corridor. DNN comprises a class of neural networks that are particularly suitable for predicting variables like travel time, but has not been adequately investigated for this purpose. Before this investigation, it was necessary to identifying methods for data imputation to account for missing data usually encountered when collecting data using traffic detectors. It was also necessary to identify a method to estimate the travel time on the freeway corridor based on data collected using point traffic detectors. A new travel time estimation method referred to as the Piecewise Constant Acceleration Based (PCAB) method was developed and compared with other methods reported in the literatures. The results show that one of the simple travel time estimation methods (the average speed method) can work as well as the PCAB method, and both of them out-perform other methods. This study also compared the travel time prediction performance of three different DNN topologies with different memory setups. The results show that one DNN topology (the time-delay neural networks) out-performs the other two DNN topologies for the investigated prediction problem. This topology also performs slightly better than the simple multilayer perceptron (MLP) neural network topology that has been used in a number of previous studies for travel time prediction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the advent of peer to peer networks, and more importantly sensor networks, the desire to extract useful information from continuous and unbounded streams of data has become more prominent. For example, in tele-health applications, sensor based data streaming systems are used to continuously and accurately monitor Alzheimer's patients and their surrounding environment. Typically, the requirements of such applications necessitate the cleaning and filtering of continuous, corrupted and incomplete data streams gathered wirelessly in dynamically varying conditions. Yet, existing data stream cleaning and filtering schemes are incapable of capturing the dynamics of the environment while simultaneously suppressing the losses and corruption introduced by uncertain environmental, hardware, and network conditions. Consequently, existing data cleaning and filtering paradigms are being challenged. This dissertation develops novel schemes for cleaning data streams received from a wireless sensor network operating under non-linear and dynamically varying conditions. The study establishes a paradigm for validating spatio-temporal associations among data sources to enhance data cleaning. To simplify the complexity of the validation process, the developed solution maps the requirements of the application on a geometrical space and identifies the potential sensor nodes of interest. Additionally, this dissertation models a wireless sensor network data reduction system by ascertaining that segregating data adaptation and prediction processes will augment the data reduction rates. The schemes presented in this study are evaluated using simulation and information theory concepts. The results demonstrate that dynamic conditions of the environment are better managed when validation is used for data cleaning. They also show that when a fast convergent adaptation process is deployed, data reduction rates are significantly improved. Targeted applications of the developed methodology include machine health monitoring, tele-health, environment and habitat monitoring, intermodal transportation and homeland security.