6 resultados para TRANSISTOR

em Digital Commons at Florida International University


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the past few decades, we have been enjoying tremendous benefits thanks to the revolutionary advancement of computing systems, driven mainly by the remarkable semiconductor technology scaling and the increasingly complicated processor architecture. However, the exponentially increased transistor density has directly led to exponentially increased power consumption and dramatically elevated system temperature, which not only adversely impacts the system's cost, performance and reliability, but also increases the leakage and thus the overall power consumption. Today, the power and thermal issues have posed enormous challenges and threaten to slow down the continuous evolvement of computer technology. Effective power/thermal-aware design techniques are urgently demanded, at all design abstraction levels, from the circuit-level, the logic-level, to the architectural-level and the system-level. ^ In this dissertation, we present our research efforts to employ real-time scheduling techniques to solve the resource-constrained power/thermal-aware, design-optimization problems. In our research, we developed a set of simple yet accurate system-level models to capture the processor's thermal dynamic as well as the interdependency of leakage power consumption, temperature, and supply voltage. Based on these models, we investigated the fundamental principles in power/thermal-aware scheduling, and developed real-time scheduling techniques targeting at a variety of design objectives, including peak temperature minimization, overall energy reduction, and performance maximization. ^ The novelty of this work is that we integrate the cutting-edge research on power and thermal at the circuit and architectural-level into a set of accurate yet simplified system-level models, and are able to conduct system-level analysis and design based on these models. The theoretical study in this work serves as a solid foundation for the guidance of the power/thermal-aware scheduling algorithms development in practical computing systems.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fueled by increasing human appetite for high computing performance, semiconductor technology has now marched into the deep sub-micron era. As transistor size keeps shrinking, more and more transistors are integrated into a single chip. This has increased tremendously the power consumption and heat generation of IC chips. The rapidly growing heat dissipation greatly increases the packaging/cooling costs, and adversely affects the performance and reliability of a computing system. In addition, it also reduces the processor's life span and may even crash the entire computing system. Therefore, dynamic thermal management (DTM) is becoming a critical problem in modern computer system design. Extensive theoretical research has been conducted to study the DTM problem. However, most of them are based on theoretically idealized assumptions or simplified models. While these models and assumptions help to greatly simplify a complex problem and make it theoretically manageable, practical computer systems and applications must deal with many practical factors and details beyond these models or assumptions. The goal of our research was to develop a test platform that can be used to validate theoretical results on DTM under well-controlled conditions, to identify the limitations of existing theoretical results, and also to develop new and practical DTM techniques. This dissertation details the background and our research efforts in this endeavor. Specifically, in our research, we first developed a customized test platform based on an Intel desktop. We then tested a number of related theoretical works and examined their limitations under the practical hardware environment. With these limitations in mind, we developed a new reactive thermal management algorithm for single-core computing systems to optimize the throughput under a peak temperature constraint. We further extended our research to a multicore platform and developed an effective proactive DTM technique for throughput maximization on multicore processor based on task migration and dynamic voltage frequency scaling technique. The significance of our research lies in the fact that our research complements the current extensive theoretical research in dealing with increasingly critical thermal problems and enabling the continuous evolution of high performance computing systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Catering to society's demand for high performance computing, billions of transistors are now integrated on IC chips to deliver unprecedented performances. With increasing transistor density, the power consumption/density is growing exponentially. The increasing power consumption directly translates to the high chip temperature, which not only raises the packaging/cooling costs, but also degrades the performance/reliability and life span of the computing systems. Moreover, high chip temperature also greatly increases the leakage power consumption, which is becoming more and more significant with the continuous scaling of the transistor size. As the semiconductor industry continues to evolve, power and thermal challenges have become the most critical challenges in the design of new generations of computing systems. ^ In this dissertation, we addressed the power/thermal issues from the system-level perspective. Specifically, we sought to employ real-time scheduling methods to optimize the power/thermal efficiency of the real-time computing systems, with leakage/ temperature dependency taken into consideration. In our research, we first explored the fundamental principles on how to employ dynamic voltage scaling (DVS) techniques to reduce the peak operating temperature when running a real-time application on a single core platform. We further proposed a novel real-time scheduling method, “M-Oscillations” to reduce the peak temperature when scheduling a hard real-time periodic task set. We also developed three checking methods to guarantee the feasibility of a periodic real-time schedule under peak temperature constraint. We further extended our research from single core platform to multi-core platform. We investigated the energy estimation problem on the multi-core platforms and developed a light weight and accurate method to calculate the energy consumption for a given voltage schedule on a multi-core platform. Finally, we concluded the dissertation with elaborated discussions of future extensions of our research. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electronic noise has been investigated in AlxGa1−x N/GaN Modulation-Doped Field Effect Transistors (MODFETs) of submicron dimensions, grown for us by MBE (Molecular Beam Epitaxy) techniques at Virginia Commonwealth University by Dr. H. Morkoç and coworkers. Some 20 devices were grown on a GaN substrate, four of which have leads bonded to source (S), drain (D), and gate (G) pads, respectively. Conduction takes place in the quasi-2D layer of the junction (xy plane) which is perpendicular to the quantum well (z-direction) of average triangular width ∼3 nm. A non-doped intrinsic buffer layer of ∼5 nm separates the Si-doped donors in the AlxGa1−xN layer from the 2D-transistor plane, which affords a very high electron mobility, thus enabling high-speed devices. Since all contacts (S, D, and G) must reach through the AlxGa1−xN layer to connect internally to the 2D plane, parallel conduction through this layer is a feature of all modulation-doped devices. While the shunting effect may account for no more than a few percent of the current IDS, it is responsible for most excess noise, over and above thermal noise of the device. ^ The excess noise has been analyzed as a sum of Lorentzian spectra and 1/f noise. The Lorentzian noise has been ascribed to trapping of the carriers in the AlxGa1−xN layer. A detailed, multitrapping generation-recombination noise theory is presented, which shows that an exponential relationship exists for the time constants obtained from the spectral components as a function of 1/kT. The trap depths have been obtained from Arrhenius plots of log (τT2) vs. 1000/T. Comparison with previous noise results for GaAs devices shows that: (a) many more trapping levels are present in these nitride-based devices; (b) the traps are deeper (farther below the conduction band) than for GaAs. Furthermore, the magnitude of the noise is strongly dependent on the level of depletion of the AlxGa1−xN donor layer, which can be altered by a negative or positive gate bias VGS. ^ Altogether, these frontier nitride-based devices are promising for bluish light optoelectronic devices and lasers; however, the noise, though well understood, indicates that the purity of the constituent layers should be greatly improved for future technological applications. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The primary purpose of this thesis was to present a theoretical large-signal analysis to study the power gain and efficiency of a microwave power amplifier for LS-band communications using software simulation. Power gain, efficiency, reliability, and stability are important characteristics in the power amplifier design process. These characteristics affect advance wireless systems, which require low-cost device amplification without sacrificing system performance. Large-signal modeling and input and output matching components are used for this thesis. Motorola's Electro Thermal LDMOS model is a new transistor model that includes self-heating affects and is capable of small-large signal simulations. It allows for most of the design considerations to be on stability, power gain, bandwidth, and DC requirements. The matching technique allows for the gain to be maximized at a specific target frequency. Calculations and simulations for the microwave power amplifier design were performed using Matlab and Microwave Office respectively. Microwave Office is the simulation software used in this thesis. The study demonstrated that Motorola's Electro Thermal LDMOS transistor in microwave power amplifier design process is a viable solution for common-source amplifier applications in high power base stations. The MET-LDMOS met the stability requirements for the specified frequency range without a stability-improvement model. The power gain of the amplifier circuit was improved through proper microwave matching design using input/output-matching techniques. The gain and efficiency of the amplifier improve approximately 4dB and 7.27% respectively. The gain value is roughly .89 dB higher than the maximum gain specified by the MRF21010 data sheet specifications. This work can lead to efficient modeling and development of high power LDMOS transistor implementations in commercial and industry applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Catering to society’s demand for high performance computing, billions of transistors are now integrated on IC chips to deliver unprecedented performances. With increasing transistor density, the power consumption/density is growing exponentially. The increasing power consumption directly translates to the high chip temperature, which not only raises the packaging/cooling costs, but also degrades the performance/reliability and life span of the computing systems. Moreover, high chip temperature also greatly increases the leakage power consumption, which is becoming more and more significant with the continuous scaling of the transistor size. As the semiconductor industry continues to evolve, power and thermal challenges have become the most critical challenges in the design of new generations of computing systems. In this dissertation, we addressed the power/thermal issues from the system-level perspective. Specifically, we sought to employ real-time scheduling methods to optimize the power/thermal efficiency of the real-time computing systems, with leakage/ temperature dependency taken into consideration. In our research, we first explored the fundamental principles on how to employ dynamic voltage scaling (DVS) techniques to reduce the peak operating temperature when running a real-time application on a single core platform. We further proposed a novel real-time scheduling method, “M-Oscillations” to reduce the peak temperature when scheduling a hard real-time periodic task set. We also developed three checking methods to guarantee the feasibility of a periodic real-time schedule under peak temperature constraint. We further extended our research from single core platform to multi-core platform. We investigated the energy estimation problem on the multi-core platforms and developed a light weight and accurate method to calculate the energy consumption for a given voltage schedule on a multi-core platform. Finally, we concluded the dissertation with elaborated discussions of future extensions of our research.