3 resultados para TIME-LIKE GEODESICS

em Digital Commons at Florida International University


Relevância:

40.00% 40.00%

Publicador:

Resumo:

ADHD, which refers to one of the most common behavioral problems among children, is subject to controversial arguments surrounding its nature and its primary treatment with psychiatric medications. At the heart of the problem are parents, whose responsibility includes providing pivotal information to clinicians for the diagnosis and deciding whether their children will receive medications. This study investigates the relationship between working parents' willingness to medicate ADHD-like behaviors and the time they are able to spend with their children during a regular workday. The importance of time spent with children derives from the observation that it is likely to influence not only parents' judgments of their children's behaviors but the behaviors themselves. The relationship was investigated using a subsample of 551 working parents (452 parents reporting no child with problems and 99 parents reporting child with problems) drawn from a population-based telephone survey of parents in the Miami-Dade and Broward counties of Florida. A series of path analyses, controlling for selected socio-demographic and family variables, showed that spending more time with their children during a regular workday was significantly related to being less willing to medicate ADHD-like behaviors. The association was stronger for parents reporting having a child with emotional and behavioral problems (β = −.20) and faint for other parents (β = −.06). The interpretation of the study findings emphasizes the vagueness surrounding the nature of ADHD and the events and procedures leading to the diagnosing of a child, as well as the delicate situations in which parents find themselves.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Providing transportation system operators and travelers with accurate travel time information allows them to make more informed decisions, yielding benefits for individual travelers and for the entire transportation system. Most existing advanced traveler information systems (ATIS) and advanced traffic management systems (ATMS) use instantaneous travel time values estimated based on the current measurements, assuming that traffic conditions remain constant in the near future. For more effective applications, it has been proposed that ATIS and ATMS should use travel times predicted for short-term future conditions rather than instantaneous travel times measured or estimated for current conditions. ^ This dissertation research investigates short-term freeway travel time prediction using Dynamic Neural Networks (DNN) based on traffic detector data collected by radar traffic detectors installed along a freeway corridor. DNN comprises a class of neural networks that are particularly suitable for predicting variables like travel time, but has not been adequately investigated for this purpose. Before this investigation, it was necessary to identifying methods for data imputation to account for missing data usually encountered when collecting data using traffic detectors. It was also necessary to identify a method to estimate the travel time on the freeway corridor based on data collected using point traffic detectors. A new travel time estimation method referred to as the Piecewise Constant Acceleration Based (PCAB) method was developed and compared with other methods reported in the literatures. The results show that one of the simple travel time estimation methods (the average speed method) can work as well as the PCAB method, and both of them out-perform other methods. This study also compared the travel time prediction performance of three different DNN topologies with different memory setups. The results show that one DNN topology (the time-delay neural networks) out-performs the other two DNN topologies for the investigated prediction problem. This topology also performs slightly better than the simple multilayer perceptron (MLP) neural network topology that has been used in a number of previous studies for travel time prediction.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Providing transportation system operators and travelers with accurate travel time information allows them to make more informed decisions, yielding benefits for individual travelers and for the entire transportation system. Most existing advanced traveler information systems (ATIS) and advanced traffic management systems (ATMS) use instantaneous travel time values estimated based on the current measurements, assuming that traffic conditions remain constant in the near future. For more effective applications, it has been proposed that ATIS and ATMS should use travel times predicted for short-term future conditions rather than instantaneous travel times measured or estimated for current conditions. This dissertation research investigates short-term freeway travel time prediction using Dynamic Neural Networks (DNN) based on traffic detector data collected by radar traffic detectors installed along a freeway corridor. DNN comprises a class of neural networks that are particularly suitable for predicting variables like travel time, but has not been adequately investigated for this purpose. Before this investigation, it was necessary to identifying methods for data imputation to account for missing data usually encountered when collecting data using traffic detectors. It was also necessary to identify a method to estimate the travel time on the freeway corridor based on data collected using point traffic detectors. A new travel time estimation method referred to as the Piecewise Constant Acceleration Based (PCAB) method was developed and compared with other methods reported in the literatures. The results show that one of the simple travel time estimation methods (the average speed method) can work as well as the PCAB method, and both of them out-perform other methods. This study also compared the travel time prediction performance of three different DNN topologies with different memory setups. The results show that one DNN topology (the time-delay neural networks) out-performs the other two DNN topologies for the investigated prediction problem. This topology also performs slightly better than the simple multilayer perceptron (MLP) neural network topology that has been used in a number of previous studies for travel time prediction.