2 resultados para TERM INFANTS

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated the effect of sleep position on breathing patterns of normal full term infants during quiet and active behavioral sleep states. Tidal volume, percent contribution of rib cage to tidal volume, and respiration rate were measured via respiratory inductive plethysmography (RIP) and pneumotachograph (PNT) in ten infants sleeping in supine versus right side-lying. Data was collected immediately following two consecutive feedings. Paired t tests and ANOVA comparisons showed no significant differences between the two postures (p $<$.05) in mean tidal volume (supine, M = 19.16, right side, M = 22.45), percent contribution of rib cage to tidal volume (supine, M = 30.55, right side M = 33.20), or respiration rate (supine, M = 49.13, right side, M = 49.37) during quiet sleep. Comparisons also showed no significant differences between the two postures (p $<$.05) in mean tidal volume (supine, M = 18.89, right side, M = 20.12), percent contribution of rib cage to tidal volume (supine, M = 6.43, right side, M = 6.97) or respiration rate (supine, M = 62.18, right side, M = 61.04) during active sleep. Therefore, no differences were found in the three respiratory variables measured between the supine and right side-lying positions. These findings suggest that infants may be positioned in either sleep position without detriment to respiratory function. This information may benefit occupational therapists and other health professionals involved in the education of parents on infant positioning and their respective advantages. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Preterm infants are exposed to high levels of modified early sensory experience in the Neonatal Intensive Care Unit (NICU). Reports that preterm infants show deficits in contingency detection and learning when compared to full-term infants (Gekoski, Fagen, & Pearlman, 1984; Haley, Weinberg, & Grunau, 2006) suggest that their exposure to atypical amounts or types of sensory stimulation might contribute to deficits in these critical skills. Experimental modifications of sensory experience are severely limited with human fetuses and preterm infants, and previous studies with precocial bird embryos that develop in ovo have proven useful to assess the effects of modified perinatal sensory experience on subsequent perceptual and cognitive development. In the current study, I assessed whether increasing amounts of prenatal auditory or visual stimulation can interfere with quail neonates’ contingency detection and contingency learning in the days following hatching. Results revealed that augmented prenatal visual stimulation prior to hatching does not disrupt the ability of bobwhite chicks to recognize and prefer information learned in a contingent fashion, whereas augmented prenatal auditory stimulation disrupted the ability of chicks to benefit from contingently presented information. These results suggest that specific types of augmented prenatal stimulation that embryos receive during late prenatal period can impair the ability to learn and remember contingently presented information. These results provide testable developmental hypotheses, with the goal of improving the developmental care and management of preterm neonates in the NICU setting.