2 resultados para Synthetic compounds
em Digital Commons at Florida International University
Resumo:
Several different mechanisms leading to the formation of (substituted) naphthalene and azanaphthalenes were examined using theoretical quantum chemical calculations. As a result, a series of novel synthetic routes to Polycyclic Aromatic Hydrocarbons (PAHs) and Nitrogen Containing Polycyclic Aromatic Compounds (N-PACs) have been proposed. On Earth, these aromatic compounds originate from incomplete combustion and are released into our environment, where they are known to be major pollutants, often with carcinogenic properties. In the atmosphere of a Saturn's moon Titan, these PAH and N-PACs are believed to play a critical role in organic haze formation, as well as acting as chemical precursors to biologically relevant molecules. The theoretical calculations were performed by employing the ab initio G3(MP2,CC)/B3LYP/6-311G** method to effectively probe the Potential Energy Surfaces (PES) relevant to the PAH and N-PAC formation. Following the construction of the PES, Rice-Ramsperger-Kassel-Markus (RRKM) theory was used to evaluate all unimolecular rate constants as a function of collision energy under single-collision conditions. Branching ratios were then evaluated by solving phenomenological rate expressions for the various product concentrations. The most viable pathways to PAH and N-PAC formation were found to be those where the initial attack by the ethynyl (C2H) or cyano (CN) radical toward a unsaturated hydrocarbon molecule led to the formation of an intermediate which could not effectively lose a hydrogen atom. It is not until ring cyclization has occurred, that hydrogen elimination leads to a closed shell product. By quenching the possibility of the initial hydrogen atom elimination, one of the most competitive processes preventing the PAH or N-PAC formation was avoided, and the PAH or N-PAC formation was allowed to proceed. It is concluded that these considerations should be taken into account when attempting to explore any other potential routes towards aromatic compounds in cold environments, such as on Titan or in the interstellar medium.
Resumo:
A natural phenomenon characterized by dense aggregations of unicellular photosynthetic marine organisms has been termed colloquially as red tides because of the vivid discoloration of the water. The dinoflagellate Karenia brevis is the cause of the Florida red tide bloom. K. brevis produces the brevetoxins, a potent suite of neurotoxins responsible for substantial amounts of marine mammal and fish mortalities. When consumed by humans, the toxin causes Neurotoxic Shellfish Poisoning (NSP). The native function of brevetoxin within the organism has remained mysterious since its discovery. There is a need to identify factors which contribute to and regulate toxin production within K. brevis. These toxins are produced and retained within the cell implicating a significant cellular role for their presence. Localization of brevetoxin and identification of a native receptor may provide insight into its native role as well as other polyether ladder type toxins such as the ciguatoxins, maitotoxins, and yessotoxins. In higher organisms these polyether ladder molecules bind to transmembrane proteins with high affinity. We anticipated the native brevetoxin receptor would also be a transmembrane protein. Photoaffinity labeling has become increasingly popular for identifying ligand receptors. By attaching ligands to these photophors, one is able to activate the molecule after the ligand binds to its receptor to obtain a permanent linkage between the two. Subsequent purification provides the protein with the ligand directly attached. A molecule that is capable of fluorescence is a fluorophore, which upon excitation is capable of re-emitting light. Fluorescent labeling uses fluorophores by attaching them covalently to biologically active compounds. The synthesis of a brevetoxin photoaffinity probe and its application in identifying a native brevetoxin receptor will be described. The preparation of a fluorescent derivative of brevetoxin will be described and its use in localizing the toxin to an organelle within K. brevis. In addition, the general utility of a synthesized photoaffinity label with other toxins having similar functionality will be described. An alternative synthetic approach to a general photoaffinity label will also be discussed whose goal was to accelerate the preparation and improve the overall synthetic yields of a multifunctional label.