2 resultados para Surfactant Lipids
em Digital Commons at Florida International University
Resumo:
Surfactant enhanced subsurface remediation has gained importance in soil remediation. Since surfactants can be sorbed on soils, the concentration of free surfactant could drop below the critical micelle concentration, CMC, which may reduce the ability of the surfactant to solubilize the contaminants in soils. ^ The main goal of this research was to study the factors affecting the surfactant sorption on soil such as surfactant concentration, soil organic content, and organic contaminants in soil and to determine the organic contaminants removed from soils by surfactant. The results would be served as the basis for the implementation of a future study in the pilot scale and field scale for surfactant enhanced subsurface remediation. ^ This research study investigated the relationship between the organic content of soils and the sorption characteristics of a nonionic surfactant, Triton X-100. The experiments were performed using uncontaminated soils and soil contaminated with naphthalene and decane. The first part of the experiments were conducted in batch mode utilizing surface tension technique to determine the CMC of surfactant Triton X-100 and the effective CMC in the soil/aqueous system. The sorption of Triton X-100 was calculated from the surface tension measurements. The second part of the experiments utilized the SPME/GC/FID technique to determine the concentration of the contaminants solubilized from the soils by the surfactant Triton X-100 at different concentrations. ^ The results indicated that when the concentration of surfactant was lower than the CMC, the amount of surfactant sorbed on soil increased with the increasing surfactant concentration and the surfactant sorption characteristics of the uncontaminated soils could be modeled by the Freundlich isotherm. For the contaminated soils, the amount of surfactant sorbed was higher than those for the uncontaminated soils. The amount of surfactant sorbed on soils also depends on the organic content in the soils. The higher the organic content in the soil, higher is the amount of surfactant sorbed onto the soil. When the concentration of surfactant was higher than the CMC, the amount of surfactant added into the soil/aqueous system will increase the number of micelle and it increase the solubilization of organic contaminant from the soils. The ratio of the moles of organic contaminant solubilized to the moles of surfactant present as micelles is called the molar solubilization ratio (MSR). MSR value for naphthalene was about 0.16 for the soil-water systems. The organic content of soil did not appear to affect MSR for naphthalene. On the other hand, the MSR values for decane were 0.52, 0.39 and 0.38 for soils with 25%, 50% and 75% organic content, respectively. ^
Resumo:
Contamination of soil, sediment and groundwater by hydrophobic organic compounds (HOCs) is a matter of growing concern because groundwater is a valuable and limited resource, and because such contamination is difficult to address. This investigation involved an experimental evaluation of the addition of several surfactant solutions to aqueous and soil-water systems contaminated with phenanthrene, a selected HOC. The results are presented in terms of: * phenanthrene solubilization achieved through surfactant addition * observed effects of surfactant addition on the mineralization of phenanthrene * estimation of relative toxicities of various surfactants using toxicity assays * literature-reported biodegradability/persistence of selected surfactants * surfactant sorption/precipitation onto soil and its impacts on proposed use of surfactant-amended remediation Surfactants were observed to facilitate the transfer of phenanthrene from the soil-sorbed phase to the aqueous pseudophase, however, surfactant solubilization did not translate into enhanced phenanthrene biodegradation.