6 resultados para Supervisory Control and Data Acquisition (SCADA)

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The future power grid will effectively utilize renewable energy resources and distributed generation to respond to energy demand while incorporating information technology and communication infrastructure for their optimum operation. This dissertation contributes to the development of real-time techniques, for wide-area monitoring and secure real-time control and operation of hybrid power systems. ^ To handle the increased level of real-time data exchange, this dissertation develops a supervisory control and data acquisition (SCADA) system that is equipped with a state estimation scheme from the real-time data. This system is verified on a specially developed laboratory-based test bed facility, as a hardware and software platform, to emulate the actual scenarios of a real hybrid power system with the highest level of similarities and capabilities to practical utility systems. It includes phasor measurements at hundreds of measurement points on the system. These measurements were obtained from especially developed laboratory based Phasor Measurement Unit (PMU) that is utilized in addition to existing commercially based PMU’s. The developed PMU was used in conjunction with the interconnected system along with the commercial PMU’s. The tested studies included a new technique for detecting the partially islanded micro grids in addition to several real-time techniques for synchronization and parameter identifications of hybrid systems. ^ Moreover, due to numerous integration of renewable energy resources through DC microgrids, this dissertation performs several practical cases for improvement of interoperability of such systems. Moreover, increased number of small and dispersed generating stations and their need to connect fast and properly into the AC grids, urged this work to explore the challenges that arise in synchronization of generators to the grid and through introduction of a Dynamic Brake system to improve the process of connecting distributed generators to the power grid.^ Real time operation and control requires data communication security. A research effort in this dissertation was developed based on Trusted Sensing Base (TSB) process for data communication security. The innovative TSB approach improves the security aspect of the power grid as a cyber-physical system. It is based on available GPS synchronization technology and provides protection against confidentiality attacks in critical power system infrastructures. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modern power networks incorporate communications and information technology infrastructure into the electrical power system to create a smart grid in terms of control and operation. The smart grid enables real-time communication and control between consumers and utility companies allowing suppliers to optimize energy usage based on price preference and system technical issues. The smart grid design aims to provide overall power system monitoring, create protection and control strategies to maintain system performance, stability and security. This dissertation contributed to the development of a unique and novel smart grid test-bed laboratory with integrated monitoring, protection and control systems. This test-bed was used as a platform to test the smart grid operational ideas developed here. The implementation of this system in the real-time software creates an environment for studying, implementing and verifying novel control and protection schemes developed in this dissertation. Phasor measurement techniques were developed using the available Data Acquisition (DAQ) devices in order to monitor all points in the power system in real time. This provides a practical view of system parameter changes, system abnormal conditions and its stability and security information system. These developments provide valuable measurements for technical power system operators in the energy control centers. Phasor Measurement technology is an excellent solution for improving system planning, operation and energy trading in addition to enabling advanced applications in Wide Area Monitoring, Protection and Control (WAMPAC). Moreover, a virtual protection system was developed and implemented in the smart grid laboratory with integrated functionality for wide area applications. Experiments and procedures were developed in the system in order to detect the system abnormal conditions and apply proper remedies to heal the system. A design for DC microgrid was developed to integrate it to the AC system with appropriate control capability. This system represents realistic hybrid AC/DC microgrids connectivity to the AC side to study the use of such architecture in system operation to help remedy system abnormal conditions. In addition, this dissertation explored the challenges and feasibility of the implementation of real-time system analysis features in order to monitor the system security and stability measures. These indices are measured experimentally during the operation of the developed hybrid AC/DC microgrids. Furthermore, a real-time optimal power flow system was implemented to optimally manage the power sharing between AC generators and DC side resources. A study relating to real-time energy management algorithm in hybrid microgrids was performed to evaluate the effects of using energy storage resources and their use in mitigating heavy load impacts on system stability and operational security.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Supervisory Control & Data Acquisition (SCADA) systems are used by many industries because of their ability to manage sensors and control external hardware. The problem with commercially available systems is that they are restricted to a local network of users that use proprietary software. There was no Internet development guide to give remote users out of the network, control and access to SCADA data and external hardware through simple user interfaces. To solve this problem a server/client paradigm was implemented to make SCADAs available via the Internet. Two methods were applied and studied: polling of a text file as a low-end technology solution and implementing a Transmission Control Protocol (TCP/IP) socket connection. Users were allowed to login to a website and control remotely a network of pumps and valves interfaced to a SCADA. This enabled them to sample the water quality of different reservoir wells. The results were based on real time performance, stability and ease of use of the remote interface and its programming. These indicated that the most feasible server to implement is the TCP/IP connection. For the user interface, Java applets and Active X controls provide the same real time access.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modern power networks incorporate communications and information technology infrastructure into the electrical power system to create a smart grid in terms of control and operation. The smart grid enables real-time communication and control between consumers and utility companies allowing suppliers to optimize energy usage based on price preference and system technical issues. The smart grid design aims to provide overall power system monitoring, create protection and control strategies to maintain system performance, stability and security. This dissertation contributed to the development of a unique and novel smart grid test-bed laboratory with integrated monitoring, protection and control systems. This test-bed was used as a platform to test the smart grid operational ideas developed here. The implementation of this system in the real-time software creates an environment for studying, implementing and verifying novel control and protection schemes developed in this dissertation. Phasor measurement techniques were developed using the available Data Acquisition (DAQ) devices in order to monitor all points in the power system in real time. This provides a practical view of system parameter changes, system abnormal conditions and its stability and security information system. These developments provide valuable measurements for technical power system operators in the energy control centers. Phasor Measurement technology is an excellent solution for improving system planning, operation and energy trading in addition to enabling advanced applications in Wide Area Monitoring, Protection and Control (WAMPAC). Moreover, a virtual protection system was developed and implemented in the smart grid laboratory with integrated functionality for wide area applications. Experiments and procedures were developed in the system in order to detect the system abnormal conditions and apply proper remedies to heal the system. A design for DC microgrid was developed to integrate it to the AC system with appropriate control capability. This system represents realistic hybrid AC/DC microgrids connectivity to the AC side to study the use of such architecture in system operation to help remedy system abnormal conditions. In addition, this dissertation explored the challenges and feasibility of the implementation of real-time system analysis features in order to monitor the system security and stability measures. These indices are measured experimentally during the operation of the developed hybrid AC/DC microgrids. Furthermore, a real-time optimal power flow system was implemented to optimally manage the power sharing between AC generators and DC side resources. A study relating to real-time energy management algorithm in hybrid microgrids was performed to evaluate the effects of using energy storage resources and their use in mitigating heavy load impacts on system stability and operational security.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Men, particularly minorities, have higher rates of diabetes as compared with their counterparts. Ongoing diabetes self-management education and support by specialists are essential components to prevent the risk of complications such as kidney disease, cardiovascular diseases, and neurological impairments. Diabetes self-management behaviors, in particular, as diet and physical activity, have been associated with glycemic control in the literature. Recommended medical care for diabetes may differ by race/ethnicity. This study examined data from the National Health and Nutrition Examination Surveys, 2007 to 2010 for men with diabetes (N = 646) from four racial/ethnic groups: Mexican Americans, other Hispanics, non-Hispanic Blacks, and non-Hispanic Whites. Men with adequate dietary fiber intake had higher odds of glycemic control (odds ratio = 4.31, confidence interval [1.82, 10.20]), independent of race/ethnicity. There were racial/ethnic differences in reporting seeing a diabetes specialist. Non-Hispanic Blacks had the highest odds of reporting ever seeing a diabetes specialist (84.9%) followed by White non-Hispanics (74.7%), whereas Hispanics reported the lowest proportions (55.2% Mexican Americans and 62.1% other Hispanics). Men seeing a diabetes specialist had the lowest odds of glycemic control (odds ratio = 0.54, confidence interval [0.30, 0.96]). The results of this study suggest that diabetes education counseling may be selectively given to patients who are not in glycemic control. These findings indicate the need for examining referral systems and quality of diabetes care. Future studies should assess the effectiveness of patient-centered medical care provided by a diabetes specialist with consideration of sociodemographics, in particular, race/ethnicity and gender.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development cost of any civil infrastructure is very high; during its life span, the civil structure undergoes a lot of physical loads and environmental effects which damage the structure. Failing to identify this damage at an early stage may result in severe property loss and may become a potential threat to people and the environment. Thus, there is a need to develop effective damage detection techniques to ensure the safety and integrity of the structure. One of the Structural Health Monitoring methods to evaluate a structure is by using statistical analysis. In this study, a civil structure measuring 8 feet in length, 3 feet in diameter, embedded with thermocouple sensors at 4 different levels is analyzed under controlled and variable conditions. With the help of statistical analysis, possible damage to the structure was analyzed. The analysis could detect the structural defects at various levels of the structure.