38 resultados para Subtropical cyclones
em Digital Commons at Florida International University
Resumo:
Freshwater wetland soils of the Everglades were studied in order to assess present environmental conditions and paleo-environmental changes using organic geochemistry techniques. Organic matter in dominant vegetation, peat and marl soils was characterized by geochemical means. Samples were selected along nutrient and hydrology gradients with the objective to determine the historical sources of organic matter as well as the extent of its preservation. Effective molecular proxies were developed to differentiate the relative input of organic matter from different biological sources to wetland soils. Thus historical vegetation shifts and hydroperiods were reconstructed using those proxies. The data show good correlations with historical water management practices starting at the turn of the century and during the mid 1900's. Overall, significant shortening of hydroperiods during this period was observed. The soil organic matter (SOM) preservation was assessed through elemental analysis and molecular characterizations of bulk 13C stable isotopes, solid state 13C NMR spectroscopy, UV-Vis spectroscopy, and tetramethyl ammonium hydroxide (TMAH) thermochemolysis-GC/MS. The relationship of the environmental conditions and degradation status of the soil organic matter (SOM) among the sites suggested that both high nutrient levels and long hydroperiod favor organic matter degradation in the soils. This is probably the result of an increase in the microbial activity in the soils which have higher nutrient levels, while longer hydroperiods may enhance physical/chemical degradation processes. The most significant transformations of biomass litter in this environment are controlled by very early physical/chemical processes and once the OM is incorporated into surface soils, the diagenetic change, even over extended periods of time is comparatively minimal, and SOM is relatively well preserved regardless of hydroperiod or nutrient levels. SOM accumulated in peat soils is more prone to continued degradation than the SOM in the marl soils. The latter is presumably stabilized early on through direct air exposure (oxidation) and thus, it is more refractory to further diagenetic transformations such as humification and aromatization reactions.
Resumo:
Heterotrophic bacteria are important decomposers and transformers of primary production and provide an important link between detritus and the aquatic food web. In seagrass ecosystems, much of seagrass primary production is unavailable through direct grazing and must undergo microbial reworking before seagrass production can enter the aquatic food web. The goal of my dissertation research is to understand better the role heterotrophic bacteria play in carbon cycling in seagrass estuaries. My dissertation research focuses on Florida Bay, a seagrass estuary that has experienced recent changes in carbon source availability, which may have altered ecosystem function. My dissertation research investigates the importance of seagrass, algal and/or cyanobacterial, and allochthonous-derived organic matter to heterotrophic bacteria in Florida Bay and helps establish the carbon base of the estuarine food web. ^ A three tiered approach to the study of heterotrophic bacterial carbon cycling and trophic influences in Florida Bay was used: (1) Spatiotemporal observations of environmental parameters (hydrology, nutrients, extracellular enzymes, and microbial abundance, biomass, and production); (2) Microbial grazing experiments under different levels of top-down and bottom-up influence; and (3) Bulk and compound-specific (bacteria-biomarker fatty acid analysis) stable carbon isotope analysis. ^ In Florida Bay, spatiotemporal patterns in microbial extracellular enzyme (also called ectoenzyme) activities indicate that microorganisms hydrolyzed selectively fractions of the estuarine organic matter pool. The microbial community hydrolyzed organic acids, peptides, and phosphate esters and did not use storage and structural carbohydrates. Organic matter use by heterotrophic bacterioplankton in Florida Bay was co-regulated by bottom-up (resource availability) and top-down (grazer mediated) processes. A bacterial carbon budget based on bacterial, epiphytic, and seagrass production indicates that heterotrophic bacterial carbon cycles are supported primarily through epiphytic production with mixing from seagrass production. Stable carbon isotope analysis of bacteria biomarkers and carbon sources in Florida Bay corroborate the results of the bacterial carbon budget. These results support previous studies of aquatic consumers in Florida Bay, indicating that epiphytic/benthic algal and/or cyanobacterial production with mixing from seagrass-derived organic matter is the carbon base of the seagrass estuarine food web. ^
Resumo:
Lake Annie is a small (37 ha), relatively deep (21 m) sinkhole lake on the Lake Wales Ridge (LWR) of central Florida with a long history of study, including monthly limnological monitoring since June, 1983. The record shows high variability in Secchi disc transparency, which ranged from < 1 to 15 m with a trend toward decreasing values over the latter decade of record. We examined available regional meteorological, groundwater and limnological data to determine the drivers and thermal consequences of variability in water transparency. While total nutrient concentrations and chlorophyll-a were highest during years of low transparency, stepwise regression showed that none of these had a signifi cant effect on transparency after water color was taken into account. Repeated years of high precipitation between 1993–2005 caused an increase in water table height, increasing the transport of dissolved substances from the vegetated watershed into the lake. Groundwater stage explained 73 % of the interannual variability in water transparency. Transparency, in turn, explained 85 % of the interannual variability in the heat budget for the lake, which ranged from 1.8 × 108 to 4.1 × 108 Joules m–2 yr–1, encompassing the range reported across Florida lakes. While surface water temperature was not affected by transparency, depths below 5 m warmed faster during the stratifi ed period during years having a lower rate of light extinction. We show that an increase in precipitation of 20 cm per year reduces the depth of the summer euphotic zone and thermocline by 1.9 and 1.6 m, respectively, and causes a 1-month reduction in the duration of winter mixing in this monomictic lake. Because biota have been shown to respond to shifts in light and heat distribution of much smaller magnitude than exhibited here, our work suggests that subtle changes in precipitation linked to climate fl uctuations may have signifi cant physical as well as biotic consequences.
Resumo:
Mastogloia smithii var. lacustris Grun. is the dominant diatom in periphyton mats of the calcareous, freshwater to brackish wetlands of Caribbean coasts. Despite oligotrophy, frequent desiccation, high irradiance and temperatures, and occasional fire, periphyton communities in these wetlands can produce over 2000 g m-2 of organic biomass, prompting studies that examine stress resistance and maintenance of algal mats under extreme conditions. The diatom flora inhabiting periphyton mats from over 500 sites in the Florida Everglades and similar wetlands in Belize, Jamaica and Mexico was examined, and M. smithii var. lacustris was a persistent component, present in 97% of samples and comprising up to 80% of a diverse diatom assemblage. Valves at various stages of division were observed encased in extracellular polysaccharide that exceeded the cell volume; SEM observations confirm issuance from mantle pores resulting in suspension of the cell in a matrix dominated by cyanobacterial filaments. Using corresponding biophysical data from the collection sites, we define the optima for M. smithii var. lacustris along salinity, pH, phosphorus, and water depth gradients. Experiments revealed a collapse of M. smithii var. lacustris populations in the presence of above-ambient phosphorus concentrations and a rapid resurgence upon reflooding of desiccated mats. This widespread diatom taxon appears to play a critical role similar to that of cyanobacteria in microbial mats, and its disappearance in the presence of enrichment threatens biodiversity and the natural function in these systems that are increasingly influenced by urbanization
Resumo:
We tested the relative importance of top-down and bottom-up effects by experimentally evaluating the combined and separate effects of nutrient availability and grazer species composition on epiphyte communities and seagrass condition in Florida Bay. Although we succeeded in substantially enriching our experimental cylinders, as indicated by elevated nitrogen concentrations in epiphytes and seagrass leaves, we did not observe any major increases in epiphyte biomass or major loss of Thalassia testudinum by algal overgrowth. Additionally, we did not detect any strong grazer effects and found very few significant nutrient-grazer interactions. While this might suggest that there was no important differential response to nutrients by individual grazer species or by various combinations of grazers, our results were complicated by the lack of significant differences between control and grazer treatments, and as such, these results are best explained by the presence of unwanted amphipod grazers (mean = 471 ind. m–2) in the control cylinders. Our estimates of grazing rates and epiphyte productivities indicate that amphipods in the control cylinders could have lowered epiphyte biomass to the same level that the experimental grazers did, thus effectively transforming the control treatments into grazer treatments. If so, our experiments suggest that the effects of invertebrate grazing (and those of amphipods alone) were stronger than the effects of nutrient enrichment on epiphytic algae, and that it does not require a large density
Resumo:
Surface water flow patterns in wetlands play a role in shaping substrates, biogeochemical cycling, and ecosystem characteristics. This paper focuses on the factors controlling flow across a large, shallow gradient subtropical wetland (Shark River Slough in Everglades National Park, USA), which displays vegetative patterning indicative of overland flow. Between July 2003 and December 2007, flow speeds at five sites were very low (s−1), and exhibited seasonal fluctuations that were correlated with seasonal changes in water depth but also showed distinctive deviations. Stepwise linear regression showed that upstream gate discharges, local stage gradients, and stage together explained 50 to 90% of the variance in flow speed at four of the five sites and only 10% at one site located close to a levee-canal combination. Two non-linear, semi-empirical expressions relating flow speeds to the local hydraulic gradient, water depths, and vegetative resistance accounted for 70% of the variance in our measured speed. The data suggest local-scale factors such as channel morphology, vegetation density, and groundwater exchanges must be considered along with landscape position and basin-scale geomorphology when examining the interactions between flow and community characteristics in low-gradient wetlands such as the Everglades.
Resumo:
Synchronous interannual variability in water transparency observed in neighboring lakes has been linked to regional precipitation and resultant runoff of dissolved organic material, but many climate forcings oscillate over time scales longer than most limnological records can detect. A strong relationship (R2 5 0.86) between transparency and the previous two years’ rainfall and lake stage in a 25-yr record from a Florida lake enabled us to hindcast transparency from a longer 75-yr record of rainfall and lake stage. Predictions revealed a ,30-yr cycle in transparency linked to the Atlantic Multidecadal Oscillation (AMO). Transparency was greatest (4–8 m) in the cool phase of the AMO (,1962–1993) associated with below-average rainfall in south Florida and lowest (0.1– 3.0 m) during two warm phases (,1932–1961, 1994–present) associated with above-average, but more variable, annual rainfall. Models that predict effects of large-scale hydrologic restoration projects on solute export from South Florida’s expansive wetlands need to account for recent entry into a warm AMO phase, where teleconnections between the AMO phases and runoff are opposite of those shown for the U.S. interior.
Resumo:
The construction of artificial reefs in the oligotrophic seagrass meadows of central Florida Bay attracted large aggregations of fish and invertebrates, and assays of nutrient availability indicated increases in availability of nutrients to sediment microalgae, periphyton, and seagrasses around reefs. An average of 37.8 large (> 10 cm) mobile animals were observed on each small artificial reef. The dominant fish species present was the gray snapper (Lutjanus griseus Linnaeus, 1758). Four yrs after the establishment of the artificial reefs, microphytobenthos abundance was twice as high in reef plots (1.7 ± 0.1 μg chl-a cm-2) compared to control plots (0.9 ± 0.1 μg chl-a cm-2). The accumulation of periphyton on glass periphytometers was four times higher in artificial reef plots (200.1 ± 45.8 mg chl-a m-2) compared to control plots (54.8 ± 6.8 mg chl-a m-2). The seagrass beds surrounding the artificial reefs changed rapidly, from a sparse Thalassia testudinum (Banks & Soland. ex König) dominated community, which persisted at control plots, to a community dominated by Halodule wrightii (Ascherson). Such changes mirror the changes induced in experimentally fertilized seagrass beds in Florida, strongly suggesting that the aggregations of animals attracted by artificial reefs concentrated nutrients in this oligotrophic seascape, favoring the growth of fast-growing primary producers like microphytobenthos and periphyton, and changing the competitively dominant seagrass from slow-growing T. testudinum to faster-growing H. wrightii in the vicinity of the reefs.
Resumo:
Extensive portions of the southern Everglades are characterized by series of elongated, raised peat ridges and tree islands oriented parallel to the predominant flow direction, separated by intervening sloughs. Tall herbs or woody species are associated with higher elevations and shorter emergent or floating species are associated with lower elevations. The organic soils in this “Ridge-and-Slough” landscape have been stable over millennia in many locations, but degrade over decades under altered hydrologic conditions. We examined soil, pore water, and leaf phosphorus (P) and nitrogen (N) distributions in six Ridge and Slough communities in Shark Slough, Everglades National Park. We found P enrichment to increase and N to decrease monotonically along a gradient from the most persistently flooded sloughs to rarely flooded ridge environments, with the most dramatic change associated with the transition from marsh to forest. Leaf N:P ratios indicated that the marsh communities were strongly P-limited, while data from several forest types suggested either N-limitation or co-limitation by N and P. Ground water stage in forests exhibited a daytime decrease and partial nighttime recovery during periods of surface exposure. The recovery phase suggested re-supply from adjacent flooded marshes or the underlying aquifer, and a strong hydrologic connection between ridge and slough. We therefore developed a simple steady-state model to explore a mechanism by which a phosphorus conveyor belt driven by both evapotranspiration and the regional flow gradient can contribute to the characteristic Ridge and Slough pattern. The model demonstrated that evapotranspiration sinks at higher elevations can draw in low concentration marsh waters, raising local soil and water P concentrations. Focusing of flow and nutrients at the evapotranspiration zone is not strong enough to overcome the regional gradient entirely, allowing the nutrient to spread downstream and creating an elongated concentration plume in the direction of flow. Our analyses suggest that autogenic processes involving the effects of initially small differences in topography, via their interactions with hydrology and nutrient availability, can produce persistent physiographic patterns in the organic sediments of the Everglades.
Resumo:
Freeze events significantly influence landscape structure and community composition along subtropical coastlines. This is particularly true in south Florida, where such disturbances have historically contributed to patch diversity within the mangrove forest, and have played a part in limiting its inland transgression. With projected increases in mean global temperatures, such instances are likely to become much less frequent in the region, contributing to a reduction in heterogeneity within the mangrove forest itself. To understand the process more clearly, we explored the dynamics of a Dwarf mangrove forest following two chilling events that produced freeze-like symptoms, i.e., leaf browning, desiccation, and mortality, and interpreted the resulting changes within the context of current winter temperatures and projected future scenarios. Structural effects from a 1996 chilling event were dramatic, with mortality and tissue damage concentrated among individuals comprising the Dwarf forest's low canopy. This disturbance promoted understory plant development and provided an opportunity for Laguncularia racemosa to share dominance with Rhizophora mangle. Mortality due to the less severe 2001 event was greatest in the understory, probably because recovery of the protective canopy following the earlier freeze was still incomplete. Stand dynamics were static over the same period in nearby unimpacted sites. The probability of reaching temperatures as low as those recorded at a nearby meteorological station (≤3 °C) under several warming scenarios was simulated by applying 1° incremental temperature increases to a model developed from a 42-year temperature record. According to the model, the frequency of similar chilling events decreased from once every 1.9 years at present to once every 3.4 and 32.5 years with 1 and 4 °C warming, respectively. The large decrease in the frequency of these events would eliminate an important mechanism that maintains Dwarf forest structure, and promotes compositional diversity.
Resumo:
Variation and uncertainty in estimated evaporation was determined over time and between two locations in Florida Bay, a subtropical estuary. Meteorological data were collected from September 2001 to August 2002 at Rabbit Key and Butternut Key within the Bay. Evaporation was estimated using both vapor flux and energy budget methods. The results were placed into a long-term context using 33 years of temperature and rainfall data collected in south Florida. Evaporation also was estimated from this long-term data using an empirical formula relating evaporation to clear sky solar radiation and air temperature. Evaporation estimates for the 12-mo period ranged from 144 to 175 cm yr21, depending on location and method, with an average of 163 cm yr21 (6 9%). Monthly values ranged from 9.2 to 18.5 cm, with the highest value observed in May, corresponding with the maximum in measured net radiation. Uncertainty estimates derived from measurement errors in the data were as much as 10%, and were large enough to obscure differences in evaporation between the two sites. Differences among all estimates for any month indicate the overall uncertainty in monthly evaporation, and ranged from 9% to 26%. Over a 33-yr period (1970–2002), estimated annual evaporation from Florida Bay ranged from 148 to 181 cm yr21, with an average of 166 cm yr21. Rainfall was consistently lower in Florida Bay than evaporation, with a long-term average of 106 cm yr21. Rainfall considered alone was uncorrelated with evaporation at both monthly and annual time scales; when the seasonal variation in clear sky radiation was also taken into account both net radiation and evaporation were significantly suppressed in months with high rainfall.
Carbon and nutrient storage in subtropical seagrass meadows: examples from Florida Bay and Shark Bay
Resumo:
Seagrass meadows in Florida Bay and Shark Bay, contain substantial stores of both organic carbon and nutrients. Soils from both systems are predominantly calcium carbonate, with an average of 82.1% CaCO3 in Florida Bay compared to 71.3% in Shark Bay. Soils from Shark Bay had, on average, 21% higher organic carbon content and 35% higher phosphorus content than Florida Bay. Further, soils from Shark Bay had lower mean dry bulk density (0.78 ± 0.01 g mL-1) than those from Florida Bay (0.84 ± 0.02 mg mL-1). The most hypersaline regions of both bays had higher organic carbon content in surficial soils. Profiles of organic carbon and phosphorus from Florida Bay indicate that this system has experienced an increase in P delivery and primary productivity over the last century; in contrast, decreasing organic carbon and phosphorus with depth in the soil profiles in Shark Bay point to a decrease in phosphorus delivery and primary productivity over the last 1000 y. The total ecosystem stocks of stored organic C in Florida Bay averages 163.5 MgCorg ha-1, lower than the average of 243.0 MgCorg ha-1 for Shark Bay; but these values place Shark and Florida Bays among the global hotspots for organic C storage in coastal ecosystems.
Resumo:
We used longline fishing to determine the effects of distance from the ocean, season, and short-term variation in abiotic conditions on the abundance of juvenile bull sharks (Carcharhinus leucas) in an estuary of the Florida Everglades, U.S.A. Logistic regression revealed that young-of-the-year sharks were concentrated at a protected site 20 km upstream and were present in greater abundance when dissolved oxygen (DO) levels were high. For older juvenile sharks (age 1+), DO levels had the greatest influence on catch probabilities followed by distance from the ocean; they were most likely to be caught at sites with .3.5 mg L21 DO and on the main branch of the river 20 km upstream. Salinity had a relatively small effect on catch rates and there were no seasonal shifts in shark distribution. Our results highlight the importance of considering DO as a possible driver of top predator distributions in estuaries, even in the absence of hypoxia. In Everglades estuaries hydrological drivers that affect DO levels (e.g., groundwater discharge, modification of primary productivity through nutrient fluxes) will be important in determining shark distributions, and the effects of planned ecosystem restoration efforts on bull sharks will not simply be mediated by changing salinity regimes and the location of the oligohaline zone. More generally, variation in DO levels could structure the nature and spatiotemporal pattern of top predator effects in the coastal Everglades, and other tropical and subtropical estuaries, because of interspecific variation in reliance on DO within the top predator guild.
Resumo:
The capacity of epifauna to control algal proliferation following nutrient input depends on responses of both grazers and upper trophic level consumers to enrichment. We examined the responses of Thalassia testudinum (turtle grass) epifaunal assemblages to nutrient enrichment at two sites in Florida Bay with varying levels of phosphorus limitation. We compared epifaunal density, biomass, and species diversity in 2 m2 plots that had either ambient nutrient concentrations or had been enriched with nitrogen and phosphorus for 6 months. At the severely P-limited site, total epifaunal density and biomass were two times higher in enriched than in unenriched plots. Caridean shrimp, grazing isopods, and gammarid amphipods accounted for much of the increase in density; brachyuran crabs, primary predatory fish, and detritivorous sea cucumbers accounted for most of the increase in biomass. At the less P-limited site, total epifaunal density and biomass were not affected by nutrient addition, although there were more caridean shrimp and higher brachyuran crab and pink shrimp biomass in enriched plots. At both sites, some variation in epifaunal density and biomass was explained by features of the macrophyte canopy, such as T. testudinum and Halodule wrightii percent cover, suggesting that enrichment may change the refuge value of the macrophyte canopy for epifauna. Additional variation in epifaunal density and biomass was explained by epiphyte pigment concentrations, suggesting that enrichment may change the microalgal food resources that support grazing epifauna. Increased epifaunal density in enriched plots suggests that grazers may be able to control epiphytic algal proliferation following moderate nutrient input to Florida Bay.
Resumo:
This special issue on ‘Science for the management of subtropical embayments: examples from Shark Bay and Florida Bay’ is a valuable compilation of individual research outcomes from Florida Bay and Shark Bay from the past decade and addresses gaps in our scientific knowledge base in Shark Bay especially. Yet the compilation also demonstrates excellent research that is poorly integrated, and driven by interests and issues that do not necessarily lead to a more integrated stewardship of the marine natural values of either Shark Bay or Florida Bay. Here we describe the status of our current knowledge, introduce the valuable extension of the current knowledge through the papers in this issue and then suggest some future directions. For management, there is a need for a multidisciplinary international science program that focusses research on the ecological resilience of Shark Bay and Florida Bay, the effect of interactions between physical environmental drivers and biological control through behavioural and trophic interactions, and all under increased anthropogenic stressors. Shark Bay offers a ‘pristine template’ for this scale of study.