16 resultados para Structural engineering -- Earthquake effects
em Digital Commons at Florida International University
Resumo:
Long-span bridges are flexible and therefore are sensitive to wind induced effects. One way to improve the stability of long span bridges against flutter is to use cross-sections that involve twin side-by-side decks. However, this can amplify responses due to vortex induced oscillations. Wind tunnel testing is a well-established practice to evaluate the stability of bridges against wind loads. In order to study the response of the prototype in laboratory, dynamic similarity requirements should be satisfied. One of the parameters that is normally violated in wind tunnel testing is Reynolds number. In this dissertation, the effects of Reynolds number on the aerodynamics of a double deck bridge were evaluated by measuring fluctuating forces on a motionless sectional model of a bridge at different wind speeds representing different Reynolds regimes. Also, the efficacy of vortex mitigation devices was evaluated at different Reynolds number regimes. One other parameter that is frequently ignored in wind tunnel studies is the correct simulation of turbulence characteristics. Due to the difficulties in simulating flow with large turbulence length scale on a sectional model, wind tunnel tests are often performed in smooth flow as a conservative approach. The validity of simplifying assumptions in calculation of buffeting loads, as the direct impact of turbulence, needs to be verified for twin deck bridges. The effects of turbulence characteristics were investigated by testing sectional models of a twin deck bridge under two different turbulent flow conditions. Not only the flow properties play an important role on the aerodynamic response of the bridge, but also the geometry of the cross section shape is expected to have significant effects. In this dissertation, the effects of deck details, such as width of the gap between the twin decks, and traffic barriers on the aerodynamic characteristics of a twin deck bridge were investigated, particularly on the vortex shedding forces with the aim of clarifying how these shape details can alter the wind induced responses. Finally, a summary of the issues that are involved in designing a dynamic test rig for high Reynolds number tests is given, using the studied cross section as an example.
Resumo:
Tall buildings are wind-sensitive structures and could experience high wind-induced effects. Aerodynamic boundary layer wind tunnel testing has been the most commonly used method for estimating wind effects on tall buildings. Design wind effects on tall buildings are estimated through analytical processing of the data obtained from aerodynamic wind tunnel tests. Even though it is widely agreed that the data obtained from wind tunnel testing is fairly reliable the post-test analytical procedures are still argued to have remarkable uncertainties. This research work attempted to assess the uncertainties occurring at different stages of the post-test analytical procedures in detail and suggest improved techniques for reducing the uncertainties. Results of the study showed that traditionally used simplifying approximations, particularly in the frequency domain approach, could cause significant uncertainties in estimating aerodynamic wind-induced responses. Based on identified shortcomings, a more accurate dual aerodynamic data analysis framework which works in the frequency and time domains was developed. The comprehensive analysis framework allows estimating modal, resultant and peak values of various wind-induced responses of a tall building more accurately. Estimating design wind effects on tall buildings also requires synthesizing the wind tunnel data with local climatological data of the study site. A novel copula based approach was developed for accurately synthesizing aerodynamic and climatological data up on investigating the causes of significant uncertainties in currently used synthesizing techniques. Improvement of the new approach over the existing techniques was also illustrated with a case study on a 50 story building. At last, a practical dynamic optimization approach was suggested for tuning structural properties of tall buildings towards attaining optimum performance against wind loads with less number of design iterations.
Resumo:
Run-off-road (ROR) crashes have increasingly become a serious concern for transportation officials in the State of Florida. These types of crashes have increased proportionally in recent years statewide and have been the focus of the Florida Department of Transportation. The goal of this research was to develop statistical models that can be used to investigate the possible causal relationships between roadway geometric features and ROR crashes on Florida's rural and urban principal arterials. ^ In this research, Zero-Inflated Poisson (ZIP) and Zero-Inflated Negative Binomial (ZINB) Regression models were used to better model the excessive number of roadway segments with no ROR crashes. Since Florida covers a diverse area and since there are sixty-seven counties, it was divided into four geographical regions to minimize possible unobserved heterogeneity. Three years of crash data (2000–2002) encompassing those for principal arterials on the Florida State Highway System were used. Several statistical models based on the ZIP and ZINB regression methods were fitted to predict the expected number of ROR crashes on urban and rural roads for each region. Each region was further divided into urban and rural areas, resulting in a total of eight crash models. A best-fit predictive model was identified for each of these eight models in terms of AIC values. The ZINB regression was found to be appropriate for seven of the eight models and the ZIP regression was found to be more appropriate for the remaining model. To achieve model convergence, some explanatory variables that were not statistically significant were included. Therefore, strong conclusions cannot be derived from some of these models. ^ Given the complex nature of crashes, recommendations for additional research are made. The interaction of weather and human condition would be quite valuable in discerning additional causal relationships for these types of crashes. Additionally, roadside data should be considered and incorporated into future research of ROR crashes. ^
Resumo:
The microbial metabolism of organic matter (OM) in seagrass beds can create sulfidic conditions detrimental to seagrass growth; iron (Fe) potentially has ameliorating effects through titration of the sulfides and the precipitation of iron-sulfide minerals into the sediment. In this study, the biogeochemical effects of Fe availability and its interplay with sulfur and OM on sulfide toxicity, phosphorous (P) availability, seagrass growth and community structure were tested. The availability of Fe and OM was manipulated in a 2 × 2 factorial experiment arranged in a Latin square, with four replicates per treatment. The treatments included the addition of Fe, the addition of OM, the addition of both Fe and OM as well as no addition. The experiment was conducted in an oligotrophic, iron-deficient seagrass bed. Fe had an 84.5% retention efficiency in the sediments with the concentration of Fe increasing in the seagrass leaves over the course of the experiment. Porewater chemistry was significantly altered with a dramatic decrease in sulfide levels in Fe addition plots while sulfide levels increased in the OM addition treatments. Phosphorus increased in seagrass leaves collected in the Fe addition plots. Decreased sulfide stress was evidenced by heavier δ34S in leaves and rhizomes from plots to which Fe was added. The OM addition negatively affected seagrass growth but increased P availability; the reduced sulfide stress in Fe added plots resulted in elevated productivity. Fe availability may be an important determinant of the impact that OM has on seagrass vitality in carbonate sediments vegetated with seagrasses.
Resumo:
The performance of building envelopes and roofing systems significantly depends on accurate knowledge of wind loads and the response of envelope components under realistic wind conditions. Wind tunnel testing is a well-established practice to determine wind loads on structures. For small structures much larger model scales are needed than for large structures, to maintain modeling accuracy and minimize Reynolds number effects. In these circumstances the ability to obtain a large enough turbulence integral scale is usually compromised by the limited dimensions of the wind tunnel meaning that it is not possible to simulate the low frequency end of the turbulence spectrum. Such flows are called flows with Partial Turbulence Simulation. In this dissertation, the test procedure and scaling requirements for tests in partial turbulence simulation are discussed. A theoretical method is proposed for including the effects of low-frequency turbulences in the post-test analysis. In this theory the turbulence spectrum is divided into two distinct statistical processes, one at high frequencies which can be simulated in the wind tunnel, and one at low frequencies which can be treated in a quasi-steady manner. The joint probability of load resulting from the two processes is derived from which full-scale equivalent peak pressure coefficients can be obtained. The efficacy of the method is proved by comparing predicted data derived from tests on large-scale models of the Silsoe Cube and Texas-Tech University buildings in Wall of Wind facility at Florida International University with the available full-scale data. For multi-layer building envelopes such as rain-screen walls, roof pavers, and vented energy efficient walls not only peak wind loads but also their spatial gradients are important. Wind permeable roof claddings like roof pavers are not well dealt with in many existing building codes and standards. Large-scale experiments were carried out to investigate the wind loading on concrete pavers including wind blow-off tests and pressure measurements. Simplified guidelines were developed for design of loose-laid roof pavers against wind uplift. The guidelines are formatted so that use can be made of the existing information in codes and standards such as ASCE 7-10 on pressure coefficients on components and cladding.
Resumo:
An increase in the demand for the freight shipping in the United States has been predicted for the near future and Longer Combination Vehicles (LCVs), which can carry more loads in each trip, seem like a good solution for the problem. Currently, utilizing LCVs is not permitted in most states of the US and little research has been conducted on the effects of these heavy vehicles on the roads and bridges. In this research, efforts are made to study these effects by comparing the dynamic and fatigue effects of LCVs with more common trucks. Ten Steel and prestressed concrete bridges with span lengths ranging from 30’ to 140’ are designed and modeled using the grid system in MATLAB. Additionally, three more real bridges including two single span simply supported steel bridges and a three span continuous steel bridge are modeled using the same MATLAB code. The equations of motion of three LCVs as well as eight other trucks are derived and these vehicles are subjected to different road surface conditions and bumps on the roads and the designed and real bridges. By forming the bridge equations of motion using the mass, stiffness and damping matrices and considering the interaction between the truck and the bridge, the differential equations are solved using the ODE solver in MATLAB and the results of the forces in tires as well as the deflections and moments in the bridge members are obtained. The results of this study show that for most of the bridges, LCVs result in the smallest values of Dynamic Amplification Factor (DAF) whereas the Single Unit Trucks cause the highest values of DAF when traveling on the bridges. Also in most cases, the values of DAF are observed to be smaller than the 33% threshold suggested by the design code. Additionally, fatigue analysis of the bridges in this study confirms that by replacing the current truck traffic with higher capacity LCVs, in most cases, the remaining fatigue life of the bridge is only slightly decreased which means that taking advantage of these larger vehicles can be a viable option for decision makers.
Resumo:
The design of interfaces to facilitate user search has become critical for search engines, ecommercesites, and intranets. This study investigated the use of targeted instructional hints to improve search by measuring the quantitative effects of users' performance and satisfaction. The effects of syntactic, semantic and exemplar search hints on user behavior were evaluated in an empirical investigation using naturalistic scenarios. Combining the three search hint components, each with two levels of intensity, in a factorial design generated eight search engine interfaces. Eighty participants participated in the study and each completed six realistic search tasks. Results revealed that the inclusion of search hints improved user effectiveness, efficiency and confidence when using the search interfaces, but with complex interactions that require specific guidelines for search interface designers. These design guidelines will allow search designers to create more effective interfaces for a variety of searchapplications.
Resumo:
The performance of a compact, wearable Conformal Strongly Coupled Magnetic Resonance (CSCMR) system is studied when the antenna is in the air and is worn on a user’s arm. The wireless powering system consists of the receiver and load elements designed on a printed circuit board that is attached to a polyester fabric band. The wearable antenna achieves high efficiency, has a small volume, and can be easily printed on substrates. Although the user effect on mobile terminal antennas has been studied in detail, absorption losses in wearable antennas have not been widely investigated. Our results show that efficiency of the antenna in free space is 70% and on a user’s arm is 50%. Human tissue in the close proximity of our wearable Conformal SCMR caused a decrease in radiated efficiency and total efficiency. This undesired degradation in antenna efficiency might be attributed to body loss and absorption losses. Our findings can be used as a reference for future studies on wearable devices and their applications, such as health and sports monitoring.
Resumo:
The European Union (EU) is an extraordinary achievement. From a regional economic organization, it grew into a polity within fifty years. The original EU of six members expanded incrementally to 27 over forty years, and it now comprises a population of almost 500 million people. While the five expansions of the European Economic Community/European Community/European Union (EU) have received considerable scholarly attention, surprisingly little attention has been given to their impacts on "Europe's" only legislative body, currently known as the European Parliament (EP). More specifically, little is known about how waves of new members (from widely diverse parties and national backgrounds) affected—and were affected by—the EP's organizational structure and its internal processes. The purpose of this study therefore is to help fill this gap by describing and explaining how the various EEC/EC/EU expansions or "membership shocks" (1973, 1981, 1986, 1995, and 2004) affected the EP's organizational structure and its internal Rules of Procedure (RoP). The central research question of this dissertation is the following: What were the major structural and procedural effects of the five membership expansions of what eventually became the European Union on the European Parliament? This dissertation answers this question by using concepts and measures drawn from organizational theory. While other studies have applied concepts and hypotheses from organizational theory to legislatures, such an approach has never been used to analyze the EP, which is conceptualized here as a "membership organization." This study, through an analysis of the EP, demonstrates that organization theory can help us fully understand the effects of membership expansions on any membership organization. That is, understanding how this particular organization responded to change can inform not only how others in this class (legislatures) do so, but how this process unfolds in a variety of times and places. The principal findings of this study are as follows: (1) EP staff growth revealed an interesting pattern: Staff did not increase concurrently with EP membership. That is, it turned out that the rate of membership growth exceeded the rate of staff increase, suggesting professionalization of EP staff and their relative empowerment vis-à-vis MEPs; (2) The number of rules and the precision within them increased; (3) the largest number of EP rule changes focused on increasing EP efficiency; and (4) The authority was centralized in the hands of EP leadership, that is, the EP President, the Conference of Presidents and also two major political groups.
Resumo:
Implicit in current design practice of minimum uplift capacity, is the assumption that the connection's capacity is proportional to the number of fasteners per connection joint. This assumption may overestimate the capacity of joints by a factor of two or more and maybe the cause of connection failures in extreme wind events. The current research serves to modify the current practice by proposing a realistic relationship between the number of fasteners and the capacity of the joint. The research is also aimed at further development of non-intrusive continuous load path (CLP) connection system using Glass Fiber Reinforced Polymer (GFRP) and epoxy. Suitable designs were developed for stud to top plate and gable end connections and tests were performed to evaluate the ultimate load, creep and fatigue behavior. The objective was to determine the performance of the connections under simulated sustained hurricane conditions. The performance of the new connections was satisfactory.
Resumo:
The increasing nationwide interest in intelligent transportation systems (ITS) and the need for more efficient transportation have led to the expanding use of variable message sign (VMS) technology. VMS panels are substantially heavier than flat panel aluminum signs and have a larger depth (dimension parallel to the direction of traffic). The additional weight and depth can have a significant effect on the aerodynamic forces and inertial loads transmitted to the support structure. The wind induced drag forces and the response of VMS structures is not well understood. Minimum design requirements for VMS structures are contained in the American Association of State Highway Transportation Officials Standard Specification for Structural Support for Highway Signs, Luminaires, and Traffic Signals (AASHTO Specification). However the Specification does not take into account the prismatic geometry of VMS and the complex interaction of the applied aerodynamic forces to the support structure. In view of the lack of code guidance and the limited number research performed so far, targeted experimentation and large scale testing was conducted at the Florida International University (FIU) Wall of Wind (WOW) to provide reliable drag coefficients and investigate the aerodynamic instability of VMS. A comprehensive range of VMS geometries was tested in turbulence representative of the high frequency end of the spectrum in a simulated suburban atmospheric boundary layer. The mean normal, lateral and vertical lift force coefficients, in addition to the twisting moment coefficient and eccentricity ratio, were determined using the measured data for each model. Wind tunnel testing confirmed that drag on a prismatic VMS is smaller than the 1.7 suggested value in the current AASHTO Specification (2013). An alternative to the AASHTO Specification code value is presented in the form of a design matrix. Testing and analysis also indicated that vortex shedding oscillations and galloping instability could be significant for VMS signs with a large depth ratio attached to a structure with a low natural frequency. The effect of corner modification was investigated by testing models with chamfered and rounded corners. Results demonstrated an additional decrease in the drag coefficient but a possible Reynolds number dependency for the rounded corner configuration.
Resumo:
Non-Destructive Testing (NDT) of deep foundations has become an integral part of the industry’s standard manufacturing processes. It is not unusual for the evaluation of the integrity of the concrete to include the measurement of ultrasonic wave speeds. Numerous methods have been proposed that use the propagation speed of ultrasonic waves to check the integrity of concrete for drilled shaft foundations. All such methods evaluate the integrity of the concrete inside the cage and between the access tubes. The integrity of the concrete outside the cage remains to be considered to determine the location of the border between the concrete and the soil in order to obtain the diameter of the drilled shaft. It is also economic to devise a methodology to obtain the diameter of the drilled shaft using the Cross-Hole Sonic Logging system (CSL). Performing such a methodology using the CSL and following the CSL tests is performed and used to check the integrity of the inside concrete, thus allowing the determination of the drilled shaft diameter without having to set up another NDT device. This proposed new method is based on the installation of galvanized tubes outside the shaft across from each inside tube, and performing the CSL test between the inside and outside tubes. From the performed experimental work a model is developed to evaluate the relationship between the thickness of concrete and the ultrasonic wave properties using signal processing. The experimental results show that there is a direct correlation between concrete thicknesses outside the cage and maximum amplitude of the received signal obtained from frequency domain data. This study demonstrates how this new method to measuring the diameter of drilled shafts during construction using a NDT method overcomes the limitations of currently-used methods. In the other part of study, a new method is proposed to visualize and quantify the extent and location of the defects. It is based on a color change in the frequency amplitude of the signal recorded by the receiver probe in the location of defects and it is called Frequency Tomography Analysis (FTA). Time-domain data is transferred to frequency-domain data of the signals propagated between tubes using Fast Fourier Transform (FFT). Then, distribution of the FTA will be evaluated. This method is employed after CSL has determined the high probability of an anomaly in a given area and is applied to improve location accuracy and to further characterize the feature. The technique has a very good resolution and clarifies the exact depth location of any void or defect through the length of the drilled shaft for the voids inside the cage. The last part of study also evaluates the effect of voids inside and outside the reinforcement cage and corrosion in the longitudinal bars on the strength and axial load capacity of drilled shafts. The objective is to quantify the extent of loss in axial strength and stiffness of drilled shafts due to presence of different types of symmetric voids and corrosion throughout their lengths.
Resumo:
Corrosion of steel tendons is a major problem for post-tensioned concrete, especially because corrosion of the steel strands is often hard to detect inside grouted ducts. Non-metallic tendons can serve as an alternative material to steel for post-tensioning applications. Carbon fiber reinforced polymer (CFRP), given its higher strength and elastic modulus, as well as excellent durability and fatigue strength, is the most practical option for post-tensioning applications. The primary objective of this research project was to assess the feasibility of the use of innovative carbon fiber reinforced polymer (CFRP) tendons and to develop guidelines for CFRP in post-tensioned bridge applications, including segmental bridges and pier caps. An experimental investigation and a numerical simulation were conducted to compare the performance of a scaled segmental bridge model, post-tensioned with two types of carbon fiber strands and steel strands. The model was tested at different prestress levels and at different loading configurations. While the study confirms feasibility of both types of carbon fiber strands for segmental bridge applications, and their similar serviceability behavior, strands with higher elastic modulus could improve structural performance and minimize displacements beyond service loads. As the second component of the project, a side-by-side comparison of two types of carbon fiber strands against steel strands was conducted in a scaled pier cap model. Two different strand arrangements were used for post-tensioning, with eight and six strands, respectively representing an over-design and a slight under-design relative to the factored demand. The model was tested under service and factored loads. The investigation confirmed the feasibility of using carbon fiber strands in unbonded post-tensioning of pier caps. Considering both serviceability and overload conditions, the general performance of the pier cap model was deemed acceptable using either type of carbon fiber strands and quite comparable to that of steel strands. In another component of this research, creep stress tests were conducted with carbon fiber composite cable (CFCC). The anchorages for all the specimens were prepared using a commercially available expansive grout. Specimens withstood 95% of the guaranteed capacity provided by the manufacturer for a period of five months, without any sign of rupture.
Resumo:
Concrete substructures are often subjected to environmental deterioration, such as sulfate and acid attack, which leads to severe damage and causes structure degradation or even failure. In order to improve the durability of concrete, the High Performance Concrete (HPC) has become widely used by partially replacing cement with pozzolanic materials. However, HPC degradation mechanisms in sulfate and acidic environments are not completely understood. It is therefore important to evaluate the performance of the HPC in such conditions and predict concrete service life by establishing degradation models. This study began with a review of available environmental data in the State of Florida. A total of seven bridges have been inspected. Concrete cores were taken from these bridge piles and were subjected for microstructural analysis using Scanning Electron Microscope (SEM). Ettringite is found to be the products of sulfate attack in sulfate and acidic condition. In order to quantitatively analyze concrete deterioration level, an image processing program is designed using Matlab to obtain quantitative data. Crack percentage (Acrack/Asurface) is used to evaluate concrete deterioration. Thereafter, correlation analysis was performed to find the correlation between five related variables and concrete deterioration. Environmental sulfate concentration and bridge age were found to be positively correlated, while environmental pH level was found to be negatively correlated. Besides environmental conditions, concrete property factor was also included in the equation. It was derived from laboratory testing data. Experimental tests were carried out implementing accelerated expansion test under controlled environment. Specimens of eight different mix designs were prepared. The effect of pozzolanic replacement rate was taken into consideration in the empirical equation. And the empirical equation was validated with existing bridges. Results show that the proposed equations compared well with field test results with a maximum deviation of ± 20%. Two examples showing how to use the proposed equations are provided to guide the practical implementation. In conclusion, the proposed approach of relating microcracks to deterioration is a better method than existing diffusion and sorption models since sulfate attack cause cracking in concrete. Imaging technique provided in this study can also be used to quantitatively analyze concrete samples.
Resumo:
Tall buildings are wind-sensitive structures and could experience high wind-induced effects. Aerodynamic boundary layer wind tunnel testing has been the most commonly used method for estimating wind effects on tall buildings. Design wind effects on tall buildings are estimated through analytical processing of the data obtained from aerodynamic wind tunnel tests. Even though it is widely agreed that the data obtained from wind tunnel testing is fairly reliable the post-test analytical procedures are still argued to have remarkable uncertainties. This research work attempted to assess the uncertainties occurring at different stages of the post-test analytical procedures in detail and suggest improved techniques for reducing the uncertainties. Results of the study showed that traditionally used simplifying approximations, particularly in the frequency domain approach, could cause significant uncertainties in estimating aerodynamic wind-induced responses. Based on identified shortcomings, a more accurate dual aerodynamic data analysis framework which works in the frequency and time domains was developed. The comprehensive analysis framework allows estimating modal, resultant and peak values of various wind-induced responses of a tall building more accurately. Estimating design wind effects on tall buildings also requires synthesizing the wind tunnel data with local climatological data of the study site. A novel copula based approach was developed for accurately synthesizing aerodynamic and climatological data up on investigating the causes of significant uncertainties in currently used synthesizing techniques. Improvement of the new approach over the existing techniques was also illustrated with a case study on a 50 story building. At last, a practical dynamic optimization approach was suggested for tuning structural properties of tall buildings towards attaining optimum performance against wind loads with less number of design iterations.