4 resultados para Structural Violence, Individual Freedoms, Extractivism, development.
em Digital Commons at Florida International University
Resumo:
Individuals of Hispanic origin are the nation's largest minority (13.4%). Therefore, there is a need for models and methods that are culturally appropriate for mental health research with this burgeoning population. This is an especially salient issue when applying family systems theories to Hispanics, who are heavily influenced by family bonds in a way that appears to be different from the more individualistic non-Hispanic White culture. Bowen asserted that his family systems' concept of differentiation of self, which values both individuality and connectedness, could be universally applied. However, there is a paucity of research systematically assessing the applicability of the differentiation of self construct in ethnic minority populations. ^ This dissertation tested a multivariate model of differentiation of self with a Hispanic sample. The manner in which the construct of differentiation of self was being assessed and how accurately it represented this particular ethnic minority group's functioning was examined. Additionally, the proposed model included key contextual variables (e.g., anxiety, relationship satisfaction, attachment and acculturation related variables) which have been shown to be related to the differentiation process. ^ The results from structural equation modeling (SEM) analyses confirmed and extended previous research, and helped to illuminate the complex relationships between key factors that need to be considered in order to better understand individuals with this cultural background. Overall results indicated that the manner in which Hispanic individuals negotiate the boundaries of interconnectedness with a sense of individual expression appears to be different from their non-Hispanic White counterparts in some important ways. These findings illustrate the need for research on Hispanic individuals that provides a more culturally sensitive framework. ^
Resumo:
Adolescence is a pivotal period offering both opportunities and constraints on individual development. It is during this important time that one decides upon and commits to the values, goals, and beliefs which will form one's identity and guide one throughout the lifespan. Positive youth development programs, such as the Miami Youth Development Project's Changing Lives Program, target the formation of a positive sense of identity as a critical intervention point. Through developing a coherent and positive sense of self, adolescents take control of and responsibility for their lives and their decisions. Furthermore, a positive identity has been found to be a developmental asset and is linked to lower risk behaviors and positive outcomes including increased self-esteem, sense of purpose, and a positive view of the future. Positive youth development programs, which promote positive identity development, have been found to be more strongly tied to positive outcomes including skills, values, and competencies than have contextual opportunities. As such, it is critical to determine what leads to positive identity development. ^ The current study used structural equation modeling to evaluate three potential mediators of identity development. Findings indicated good model fit where change in identity commitment and change in identity exploration were mediated by informational identity style, personal expressiveness, and identity distress. There were also significant differences found between the control and intervention groups indicative of intervention effects. The findings of the current study suggest potential areas of intervention as well as the need for further research including longitudinal study and the use of qualitative methodology. ^
Resumo:
During the past two decades, many researchers have developed methods for the detection of structural defects at the early stages to operate the aerospace vehicles safely and to reduce the operating costs. The Surface Response to Excitation (SuRE) method is one of these approaches developed at FIU to reduce the cost and size of the equipment. The SuRE method excites the surface at a series of frequencies and monitors the propagation characteristics of the generated waves. The amplitude of the waves reaching to any point on the surface varies with frequency; however, it remains consistent as long as the integrity and strain distribution on the part is consistent. These spectral characteristics change when cracks develop or the strain distribution changes. The SHM methods may be used for many applications, from the detection of loose screws to the monitoring of manufacturing operations. A scanning laser vibrometer was used in this study to investigate the characteristics of the spectral changes at different points on the parts. The study started with detecting a load on a plate and estimating its location. The modifications on the part with manufacturing operations were detected and the Part-Based Manufacturing Process Performance Monitoring (PbPPM) method was developed. Hardware was prepared to demonstrate the feasibility of the proposed methods in real time. Using low-cost piezoelectric elements and the non-contact scanning laser vibrometer successfully, the data was collected for the SuRE and PbPPM methods. Locational force, loose bolts and material loss could be easily detected by comparing the spectral characteristics of the arriving waves. On-line methods used fast computational methods for estimating the spectrum and detecting the changing operational conditions from sum of the squares of the variations. Neural networks classified the spectrums when the desktop – DSP combination was used. The results demonstrated the feasibility of the SuRE and PbPPM methods.
Resumo:
During the past two decades, many researchers have developed methods for the detection of structural defects at the early stages to operate the aerospace vehicles safely and to reduce the operating costs. The Surface Response to Excitation (SuRE) method is one of these approaches developed at FIU to reduce the cost and size of the equipment. The SuRE method excites the surface at a series of frequencies and monitors the propagation characteristics of the generated waves. The amplitude of the waves reaching to any point on the surface varies with frequency; however, it remains consistent as long as the integrity and strain distribution on the part is consistent. These spectral characteristics change when cracks develop or the strain distribution changes. The SHM methods may be used for many applications, from the detection of loose screws to the monitoring of manufacturing operations. A scanning laser vibrometer was used in this study to investigate the characteristics of the spectral changes at different points on the parts. The study started with detecting a load on a plate and estimating its location. The modifications on the part with manufacturing operations were detected and the Part-Based Manufacturing Process Performance Monitoring (PbPPM) method was developed. Hardware was prepared to demonstrate the feasibility of the proposed methods in real time. Using low-cost piezoelectric elements and the non-contact scanning laser vibrometer successfully, the data was collected for the SuRE and PbPPM methods. Locational force, loose bolts and material loss could be easily detected by comparing the spectral characteristics of the arriving waves. On-line methods used fast computational methods for estimating the spectrum and detecting the changing operational conditions from sum of the squares of the variations. Neural networks classified the spectrums when the desktop – DSP combination was used. The results demonstrated the feasibility of the SuRE and PbPPM methods.